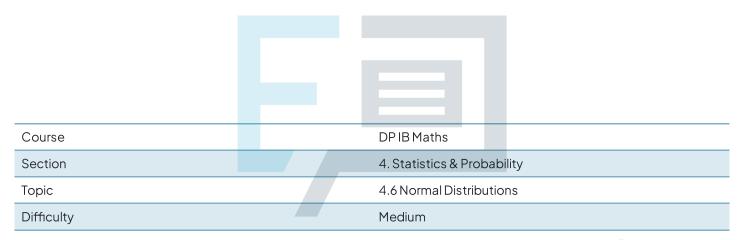


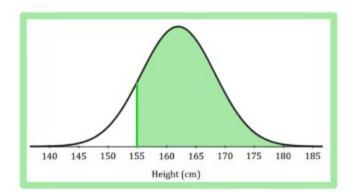
4.6 Normal Distributions

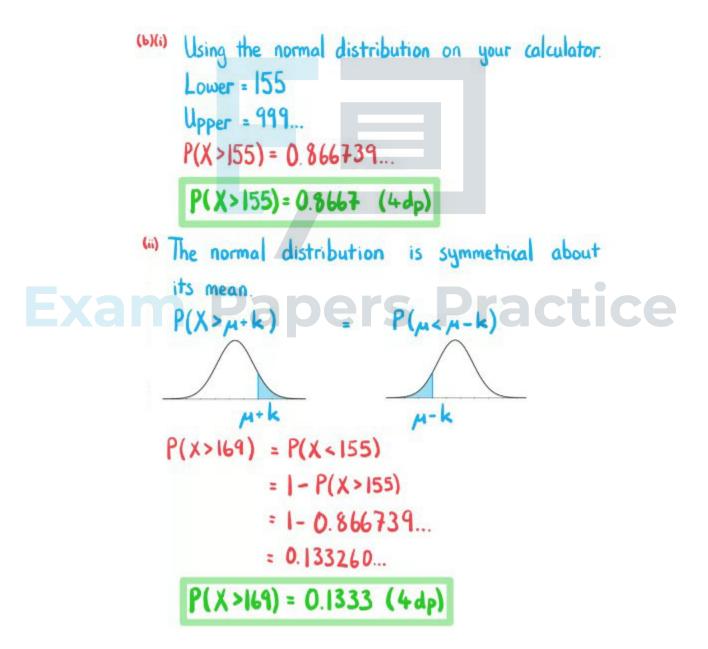
Mark Schemes



Exam Papers Practice

To be used by all students preparing for DP IB Maths Al SL Students of other boards may also find this useful





(c)(i) 68% of data lies between
$$\mu \pm \sigma$$

 $\mu + \sigma = 162 + 6.3 = 168.3$
 $\mu - \sigma = 162 - 6.3 = 155.7$

68% of heights lie in range 155.7cm to 168.3cm

95 % of data lies between
$$\mu \pm 2\sigma$$

 $\mu + 2\sigma = 162 + 2(6.3) = 174.6$
 $\mu - 2\sigma = 162 - 2(6.3) = 149.4$

95% of heights lie in range 149.4 cm to 174.6 cm

99.7% of heights lie in range 143.1 cm to 180.9 cm

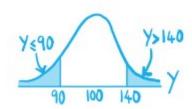
$$\times < 20$$
 $\times < 29$
 $\times < 20$
 \times

a) For a normal distribution $P(X < k) = P(X \le k)$

For probabilities use 4dp or 3sf (whichever is more accurate)

Example Papers

Practice



$$\gamma \sim N(100,225)$$
 $\mu = 100$
 $\sigma^2 = 225$
 $\sigma = 15$

b) (i) Lower = -999...
Upper = 90
$$P(y \le 90) = 0.252492...$$

 $P(y \le 90) = 0.2525$ (4dp)

$$P(85 \le Y \le 115) = 0.682689...$$

(a)
$$W \sim N(200, 1.75^2)$$

 $M = 200$
 $\sigma^2 = 1.75^2$
 $\sigma = 1.75$

W<195

W>203

W

(i)
$$L_{OWEr} = -994...$$

 $V_{PPEr} = 195$
 $P(W < 195) = 0.002137...$
 $P(W < 195) = 0.00214$ (3sf)
(ii) $L_{OWEr} = 203$
 $V_{PPEr} = 999...$
 $P(W > 203) = 0.043238...$
 $P(W > 203) = 0.0432$ (4 dp)

Exam Papers Practice

 b) Let X be the number of chocolate bars in the sample that have a weight of at least 195g then X~B(12,ρ)

$$P = P(W \ge 195)$$

= $1 - P(W < 195)$
= $1 - 0.002137...$ Use full answer to avoid rounding errors.
= $0.997863...$

.. X~B(12, 0.997863)

If all of the sample exceed 195g then
$$X = 12$$

$$P(X = 12) = (0.997863)^{12}$$

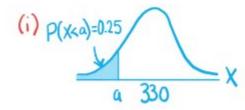
$$= 0.974655...$$

$$P(X=12) = 0.9747 (4dp)$$

Exam Papers Practice

Question 4

(a)
$$\times \sim N(330, 10^2)$$
 $\mu = 330$ $\sigma^2 = 10^2$ $\sigma = 10$



Area = 0.25

= X a = 323.255...

a = 323.26 (2dp)

(b)
$$\gamma \sim N(10,10)$$

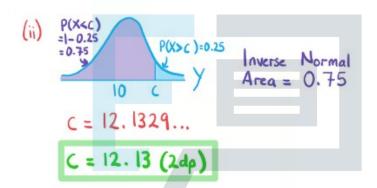
 $\mu = 10$
 $\sigma^2 = 10$
 $\sigma = \sqrt{10}$

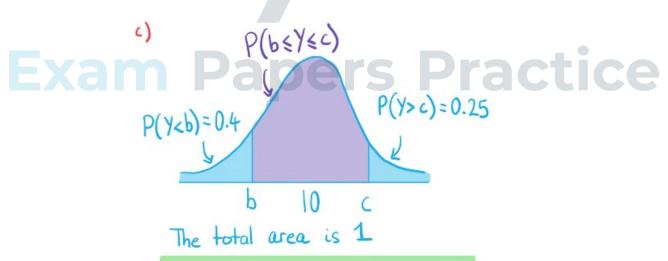
(i)
$$P(y < b)$$
= 0.4

b 10

b = 9.19884...

b = 9.20 (2dp)





$$P(y < b) + P(b < y < c) + P(y > c) = 1$$

 $P(b < y < c) = 1 - P(y < b) - P(y > c)$
 $= 1 - 0.4 - 0.25$
 $= 0.35$

(a)
$$\times \sim N(210 \ 27.8^2)$$

$$\begin{array}{c}
 \mu = 210 \\
 \sigma^2 = 27.8^2 \\
 \sigma = 27.8
 \end{array}$$
(i) $P(X < a)$

$$= 0.25$$

$$a = 191.249...$$

$$a = 191 \ (3sf)$$

$$\begin{array}{c}
 P(X < b) \\
 = 0.25 \\
 = 0.75
 \end{array}$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

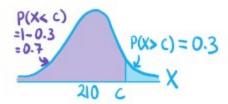
$$= 0.75$$

$$= 0.75$$

$$= 0.75$$

$$= 0.7$$

(b) In the top 30% means X > c where P(X > c) = 0.3



Inverse Normal Area = 0.7

231 > 224.578...

Amelia is in the top 30% and will move on to the next stage of training.

Question 6 (a) $V \sim N(330, \sigma^2)$

Papers P(V>333.28)=0.16 ICE

P(V < 326.72) = 0.16

P(326.72 < V < 333.28) = 0.68

68% of data lies between MI or

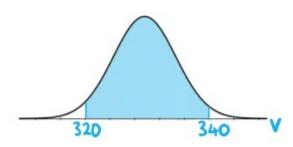
M+ 0 = 333.28

330+ 0 = 333.28

0 = 3.28 as m+ 0 = 333.28

b) Using the normal distribution on your calculator.

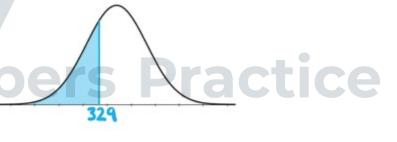
Upper = 340



P(320 < V < 340) = 0.99770227...

Let X be the number of the 6 cans that contain

less than 329ml.



$$P = 0.38022951...$$

$$P(X=6) = p^6$$

= 0.00302186...

$$P(X=6) = 0.00302 (3sf)$$