Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

4.6 Normal Distribution

IB Maths - Revision Notes

AA HL

4.6.1 The Normal Distribution

Properties of Normal Distribution

The bino mial distribution is an example of a discrete probability distribution. The normal distribution is an example of a continuous probability distribution.

What is a continuous random variable?

- A continuo us rand om variable (often abbreviated to CRV) is a random variable that can take any value within a range of infinite values
- Continuous random variables usually measure something
- Forexample, height, weight, time, etc

What is a continuous probability distribution?

- A continuo us probability dis tribution is a probability distribution in which the random variable X is continuous
- The pro bability of X being a particular value is always zero
- $\mathrm{P}(X=k)=0$ for any value k
- Instead we define the probability density function $\mathrm{f}(X)$ for a specific value
- This is a function that describes the relative likelihood that the random variable would be close to that value
- We talk about the probability of X being within a certain range
- A continuous probability distribution can be represented by a continuous graph (the values for X along the horizontal axis and probability density on the vertical axis)
- The area under the graph between the points $X=a$ and $X=b$ is equal to $\mathrm{P}(a \leq X \leq b)$
- The total area under the graph equals 1
- As $\mathrm{P}(X=k)=0$ for anyvalue k, it does not matter if we use strict orweak inequalities
- $\mathrm{P}(X \leq k)=\mathrm{P}(X<k)$ for any value $k w h e n X$ is a continuous random variable

What is a normaldistribution?

- A normal distribution is a cont inuous probability distribution
- The continuous rand om variable X can follow a normal distribution if:
- The distribution is symmetrical
- The distribution is bell-shaped
- If X follows a no rmal distribution then it is denoted $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$
- μ is the mean
- σ^{2} is the variance
- σ is the standard deviation
- If the mean changes then the graph is translated horizont ally
- If the variance increases then the graph is widened horizontally and made taller vertically to maintain the same area
- A small variance leads to a tall curve with a narrow centre
- A large variance leads to a short curve with a wide centre

SAME VARIANCES
DIFFERENT MEANS

> SAME MEANS
> DIFFERENT VARIANCES

What are the important properties of a normal distribution?

- The mean is μ
- The variance is σ^{2}
- If you need the standard deviation remember to square root this
- The normal distribution is symmetrical about
- Mean $=$ Median $=$ Mode $=\mu$
- There are the results:
- Approximately two-thirds (68\%) of the data lies within one standard deviation of the mean ($\mu \pm \sigma$)
- Approximately 95% of the data lies within two standard deviations of the mean ($\mu \pm 2 \sigma$)
- Nearly all of the data (99.7\%) lies within three stand ard deviations of the mean ($\mu \pm 3 \sigma$)

Page 2 of 11
For more help visit our website www.exampaperspractice.co.uk

Modelling with Normal Distribution

What can be modelled using a normal distribution?

- A lot of real-life continuous variables can be modelled by a normal distribution provided that the po pulation is large enough and that the variable is symmetrical with one mode
- For a no rmal dis tribution X can take any real value, however values far from the mean (more than 4 stand ard deviations away from the mean) have a probability density of practically zero
- This fact allows us to model variables that are not defined for all real values such as height and weight

What can not be modelled using a normal distribution?

- Variables which have more than one mo de or no mode
- For example: the number given by a rand om number generator
- Variables which are not symmetrical
- For example: how long a human lives for

- Exam Tip

- An exam question might involve different types of distributions so make it clear which distribution is being used for each variable

Worked example

The random variable S represents the speeds (mph) of a certain species of cheetahs when they run. The variable is mo celled using $\mathrm{N}(40,100)$.
a) Write down the mean and stand ard deviation of the running speeds of cheetahs.

Mean $\mu=40$
Standard deviation $\sigma=10$
b) State two assumptions that have been made in order to use this model.

> We assume that the distribution of the speeds is
> - symmetrical
> - bell-shaped

4.6.2 Calculations with Normal Distribution

Calculating Normal Probabilities

Throughout this section we will use the random variable $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$. For X distributed normally, X can take any real number. Therefore anyvalues mentioned in this section will be assumed to be real numbers.

How do Ifind probabilities using a normal distribution?

- The area under a normal curve between the points $X=a$ and $X=b$ is equal to the probability $\mathrm{P}(a<X<b)$
- Rememberfora normal distributionyou do not need to worry about whether the inequality is strict (<or>) orweak (\leq or \geq)
- $\mathrm{P}(a<X<b)=\mathrm{P}(a \leq X \leq b)$
- You will be expected to use distribution functions on your GDC to find the pro babilities when working with a normal distribution

How do Icalculate $P(X=x)$: the probability of a single value for a normal distribution?

- The pro bability of a single value is always zero for a normal distribution
- You can picture this as the area of a single line is zero
- $\mathrm{P}(X=x)=0$
- Your GDC is likely to have a "Normal Probability Density" function
- This is sometimes shortened to NPD, Normal PD or Normal Pdf
- IGNORE THIS FUNCTION for this course!

This calculates the probability density function at a point NOT the probability

How do Icalculate $\mathrm{P}(\mathrm{a}<\boldsymbol{X}<b)$: the probability of a range of values for a normal distribution?

- You need a GDC that can calculate cumulative normal probabilities
- You want to use the "Normal Cumulative Distribution" function
- This is sometimes shortened to NCD, Normal CD orNormal Cdf
- You will need to enter:
- The 'lower bound' - this is the value a
- The 'upper bound - this is the value b
- The ' μ ' value - this is the mean
- The ' σ ' value - this is the standard deviation
- Check the order carefully as some calculators ask for standard deviation before mean
- Remember it is the stand ard deviation
- so if you have the variance then square root it
- Always sketch a quick diagram to visualise which area you are lo oking for

How do Icalculate $\mathrm{P}(X>a)$ or $\mathrm{P}(X<b)$ fora normal distribution?

- You will still use the "Normal Cumulative Distribution" function
- $\mathrm{P}(X>a)$ can be estimated using an upper bound that is sufficiently bigger than the mean
- Using a value that is more than 4 standard deviations bigger than the mean is quite accurate
- Oraneasier option is just to input lots of 9's for the upper bound (99999999... or 1099)
- $\mathrm{P}(X<b)$ can be estimated using a lower bound that is sufficiently smaller than the mean
- Using a value that is more than 4 standard deviations smaller than the mean is quite accurate
- Or an easier option is just to input lots of 9's for the lower bound with a negative sign (-99999999... or -1099)

Are there any usef ulidentities?

- $\mathrm{P}(X<\mu)=\mathrm{P}(X>\mu)=0.5$
- As $\mathrm{P}(X=a)=0$ you can use:
- $\mathrm{P}(X<a)+\mathrm{P}(X>a)=1$
- $\mathrm{P}(X>a)=1-\mathrm{P}(X<a)$
- $\mathrm{P}(a<X<b)=\mathrm{P}(X<b)-\mathrm{P}(X<a)$
- These are useful when:
- The mean and/or stand ard deviation are unknown
- You only have a diagram
- You are working with the inverse distribution

- Exam Tip

- Check carefully whe ther you have entered the standard deviation orvariance into your GDC

Exam Papers Practice

Worked example

The random variable $Y \sim \mathrm{~N}\left(20,5^{2}\right)$. Calculate:
i) $\quad \mathrm{P}(Y=20)$.

$$
\begin{aligned}
& \text { Identify } \mu \text { and } \sigma \\
& \mu=20 \quad \sigma^{2}=5^{2} \text { so } \sigma=5
\end{aligned}
$$

Sketch!

ii) $\quad \mathrm{P}(18 \leq Y<27)$.

-
${ }_{\text {iii) }}{ }^{\text {light }} \mathrm{P}(Y>29)$

Inverse Normal Distribution

Given the value of $\mathrm{P}(X<a)$ how do Ifind the value of a ?

- Your GDC will have a function called "Inverse Normal Distribution"
- Some calculators call this InvN
- Given that $\mathrm{P}(X<a)=p$ you will need to enter:
- The 'area' - this is the value p
- Some calculators might ask for the 'tail' - this is the left tail as youknow the area to the left of a
- The ' μ ' value - this is the mean
- The ' σ ' value - this is the stand ard deviation

Given the value of $\mathrm{P}(X>a)$ howdo Ifind the value of a ?

- If your calculator does have the tail option (left, right or centre) then you can use the "Inverse Normal Distribution" function straightaway by:
- Selecting 'right' for the tail
- Entering the area as ' p '
- If yourcalculator does not have the tail option(left, right orcentre) then:
- Given $\mathrm{P}(X>a)=p$
- Use $\mathrm{P}(X<a)=1-\mathrm{P}(X>a)$ to rewrite this as
- $\mathrm{P}(X<a)=1-p$
- Then use the method for $\mathrm{P}(X<a)$ to find a

(9) Exam Tip

- Always check your answer makes sense
- If $\mathrm{P}(X<a)$ is less than 0.5 then a should be smaller than the mean
- If $\mathrm{P}(X<a)$ is more than 0.5 then a should be bigger than the mean
- A sketch will help you see this

Exam Papers Practice

Worked example

The random variable $W \sim \mathrm{~N}(50,36)$.
Find the value of W such that $\mathrm{P}(W>w)=0.175$.

Identify μ and σ
$\mu=50 \quad \sigma^{2}=36$ so $\sigma=6$
Sketch!

Area from left is 0.825
Use Inverse Normal Distribution function on GDC $\omega=55.6075$...
$\omega=55.6$ ($3 \mathrm{~s} f$)

4.6.3 Standardisation of Normal Variable s

Standard Normal Distribution

What is the standard normal distribution?

- The standard normal distribution is a normal distribution where the mean is 0 and the standard deviation is 1
- It is denoted by Z
- $Z \sim \mathrm{~N}\left(0,1^{2}\right)$

Why is the standard normal distribution important?

- Anynormal distribution curve can be transformed to the standard normal distribution curve bya horizontal translation and a horizont al stretch
- Therefore we have the relationship:
- $Z=\frac{X-\mu}{\sigma}$
- Where $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ and $Z \sim \mathrm{~N}\left(0,1^{2}\right)$
- Probabilities are related by:
- $\mathrm{P}(a<X<b)=\mathrm{P}\left(\frac{a-\mu}{\sigma}<Z<\frac{b-\mu}{\sigma}\right)$
- This will be useful when the mean or variance is unknown
- Some mathematicians use the function $\Phi(z)$ to represent $\mathrm{P}(Z<z)$

z-values

What are z-values (standardised values)?

- For a normal distribution $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ the z-value (standardised value) of an x-value tells you how manystandard deviations it is away from the mean
- If $z=1$ then that means the x-value is 1 stand ard deviation bigger than the mean
- If $z=-1$ then that means the x-value is 1standard deviation smaller than the mean
- If the x-value is more than the mean then its corresponding z-value will be positive
- If the x-value is less than the mean then its corresponding z-value will be negative
- The z-value can be calculated using the formula:
- $Z=\frac{x-\mu}{\sigma}$
- This is given in the formula booklet
- z-values can be used to compare values from different distributions

Finding Sigma and Mu

How do Ifind the mean (μ) or the standard deviation (σ) if one of them is unknown?

- If the mean or stand ard deviation of $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ is unknown then yo u will need to use the standard normal distribution
- You will need to use the formula
- $Z=\frac{X-\mu}{\sigma}$ orits rearranged form $X=\mu+\sigma Z$
- You will be given a probability for aspecific value of
- $\mathrm{P}(X<x)=p$ or $\mathrm{P}\left(X>_{x}\right)=p$
- To find the unknown parameter:
- STEP 1: Sket ch the normal curve
- Label the knownvalue and the mean
- STEP 2: Find the \boldsymbol{z}-value for the given value of \boldsymbol{x}
- Use the Inverse Normal Distribution to find the value of Z such that $\mathrm{P}(Z<Z)=p$ or $\mathrm{P}(Z>z)=p$
- Make sure the direction of the inequality for Z is consistent with the inequality for X
- Try to use lots of decimal places for the z-value or store your answer to avoid rounding errors
- You should use at least one extra decimal place within yo ur working than your intended degree of accuracy for your answer
- STEP 3: Substitute the known values into $Z=\frac{X-\mu}{\sigma}$ or $X=\mu+\sigma Z$
- You will be given and one of the parameters $(\mu \circ r \sigma)$ in the question
- You will have calculated zinSTEP2
- STEP 4: Solve the equation

Howdo lind the mean (μ) and the standard deviation (σ) if both of them are unknown?

- If both of them are unkno wn then you will be given two probabilities fortwo specific values of \boldsymbol{x}
- The process is the same as above
- You will now be able to calculate two \boldsymbol{z}-values
- Youcan form two equations (rearranging to the form $X=\mu+\sigma Z$ is helpful)
- Younow have to solve the two equations simultaneously (you can use your calculator to do this)
- Be careful not to mix up whichz-value goes with which value of x

Worked example

It is known that the times, in minutes, taken by students at a school to eat their lunch can be modelled using a normal distribution with mean μ minutes and standard deviation σ minutes.

Given that 10% of students at the school take less than 12 minutes to eat their lunch and 5% of the students take more than 40 minutes to eat their lunch, find the mean and stand ard deviation of the time taken by the students at the school.

Let $T \sim N\left(\mu, \sigma^{2}\right)$ be the time taken to eat lunch
Step I
Sketch the information

Find the corresponding 2 -values using inverse normal on GDC
$Z \sim N\left(0,1^{2}\right)$
$P\left(z<z_{1}\right)=0.1 \Rightarrow z_{1}=-1.2815 \ldots$
$P\left(z>z_{2}\right)=0.05 \Rightarrow P\left(z<z_{2}\right)=0.95 \Rightarrow z_{2}=1.6448 \ldots$
Step 3
Form equations using $z=\frac{x-\mu}{\sigma}$ or $x=\mu+\sigma z$
Copyright
© 2024 Exam Pap
$12=\mu-(1.2815 \ldots)_{\sigma}$
$40=\mu+(1.6448 \ldots) \sigma$
$S_{\text {TE }} 4$
Solve equations using $G D C$
$\mu=24.26 \ldots \quad \sigma=9.568 \ldots$
$M_{\text {lan }}=24.3$ ming $\quad(3 \mathrm{sf})$
Standard deviation $=9.57$ min (3sf)

