Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

4.5 Probability Distributions

4.5.1 Discrete Probability Distributions

Discrete Probability Distributions

What is a discrete random variable?

- A random variable is a variable whose value depends on the outcome of a randomevent
- The value of the rand om variable is not known until the event is carried out (this is what is meant by 'random' in this case)
- Random variables are denoted using upper case letters (X, Y, etc)
- Particular outcomes of the event are denoted using lo wer case letters ($\boldsymbol{X}, \boldsymbol{Y}$, etc)
- $\mathrm{P}(X=x)$ means "the probability of the random variable X taking the value X "
- A discrete rand om variable (often abbreviated to DRV) can only take cert ain values within a set
- Dis crete random variables usually count something
- Dis crete random variables usually can only take a finite number of values but it is po ssible that it can take an infinite number of values (see the examples below)
- Examples of discrete random variables include:
- The number of times a coin lands on heads when flipped 20 times
- this has a finite number of outcomes: $\{0,1,2, \ldots, 20\}$
- The number of emails a manager receives within an hour
- this has an infinite number of outcomes: $\{1,2,3, \ldots\}$
- The number of times a dice is rolled until it lands ona 6
- this has an infinite number of outcomes: $\{1,2,3, \ldots\}$
- The number that a dice land s on when rolled once
- this has a finite number of outcomes: $\{1,2,3,4,5,6\}$

What is a probability distribution of a discrete random variable?

-4 A discrete probability distribution fully describes all the values that a discrete rand om variable cantake along with their associated probabilities

- This can be given in a table
- Orit can be given as a function (called a discrete probability distribution function or "pdf")
- Theycan be represented by vertical line graphs (the possible values for along the horizontal axis and the probability on the vertical axis)
- The sum of the probabilities of all the values of a discrete random variable is 1
- This is usuallywritten $\sum \mathrm{P}(X=x)=1$
- A discrete uniform distribution is one where the rand om variable takes a finite number of values each with an equal probability
- If there are n values then the probability of each one is $\frac{1}{n}$

LET x BE THE NUMBER THAT THE SPINNER LANDS ON

x	-2	0	$\frac{1}{3}$	5
$P(X=x)$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{2}$

$$
P(X=x)= \begin{cases}\frac{1}{8} & x=0, \frac{1}{3} \\ \frac{1}{4} & x=-2 \\ \frac{1}{2} & x=5 \\ 0 & \text { OTHERWISE }\end{cases}
$$

How do lcalculate probabilities using a discrete probability distribution?

- First draw a table to represent the probability dis tribution
- If it is given as a function then find each probability
- If any probabilities are unknown then use algebra to repres ent them
- Form an equation using $\sum \mathrm{P}(X=X)=1$
- Add to gether all the probabilities and make the sum equal to 1
- To find $\mathrm{P}(X=k)$
- If k is a possible value of the random variable X then $\mathrm{P}(X=k)$ will be given in the table
- If k is not a possible value then $\mathrm{P}(X=k)=0$
- To find $\mathrm{P}(X \leq k)$
- Identify all possible values, \boldsymbol{X}_{i}, that $X_{\text {cantake which satisfy } X_{i} \leq k}$
- Add to gether all their corresponding probabilities
- $\mathrm{P}(X \leq k)=\sum_{x_{i} \leq k} \mathrm{P}\left(X=X_{i}\right)$
- Some mathematicians use the notation $\mathrm{F}(x)$ to represent the cumulative distribution
- $\mathrm{F}(x)=\mathrm{P}(X \leq x)$
- Using a similarmethod you can find $\mathrm{P}(X<k), \mathrm{P}(X>k)$ and $\mathrm{P}(X \geq k)$

Exam Papers Practice

- As all the probabilities add up to lyou can form the following equivalent equations:
- $\mathrm{P}(X<k)+\mathrm{P}(X=k)+\mathrm{P}(X>k)=1$
- $\mathrm{P}(X>k)=1-\mathrm{P}(X \leq k)$
- $\mathrm{P}(X \geq k)=1-\mathrm{P}(X<k)$

How do Iknow which inequality to use?

- $\mathrm{P}(X \leq k)$ would be used forphrases such as:
- At most, no greaterthan, etc
- $\mathrm{P}(X<k)$ would be used for phrases such as:
- Fewerthan
- $\mathrm{P}(X \geq k)$ would be used forphrases such as:
- At least, no fewerthan, etc
- $\mathrm{P}(X>k)$ would be used for phrases such as:
- Greaterthan, etc

Exam Papers Practice
© 2024 Exam Papers Practice

Worked example

The probability dis tribution of the discrete rand om variable X is given by the function

$$
\mathrm{P}(X=x)=\left\{\begin{array}{cl}
k x^{2} & x=-3,-1,2,4 \\
0 & \text { otherwise } .
\end{array}\right.
$$

a)

$$
\text { Show that } k=\frac{1}{30} \text {. }
$$

Construct a table

b) Calculate $\mathrm{P}(X \leq 3)$

$$
\text { Substitute } k \text { into the probabilities }
$$

Copyright Substitute k into the probabilities
© 2024 Exam Pap

x	-3	-1	2	4
$P(X=x)$	$\frac{3}{10}$	$\frac{1}{30}$	$\frac{2}{15}$	$\frac{8}{15}$

$$
\begin{aligned}
& X \leq 3: X=-3,-1,2 \\
& P(X \leq 3)=P(X=-3)+P(X=-1)+P(X=2) \\
& \\
& =\frac{3}{10}+\frac{1}{30}+\frac{2}{15} \\
& P(X \leq 3)=\frac{7}{15}
\end{aligned}
$$

4.5.2 Expected Values

Expected Values $\mathrm{E}(\mathrm{X})$

What does $E(X)$ mean and howdo lcalculate $E(X)$?

- $E(X)$ means the expected value or the mean of a random variable X
- The expected value does not need to be an obtainable value of X
- For example: the expected value number of times a coin will land on tails when flipped 5 times is 2.5
- For a discrete rando mariable, it is calculated by:
- Multiplying each value of X with its corresponding probability
- Adding all these terms to gether

$$
\mathrm{E}(X)=\sum \mathrm{xP}(X=x)
$$

- This is given in the formula booklet
- Look out forsymmetrical distributions (where the values of X are symmetrical and their probabilities are symmetrical) as the mean of these is the same as the median
- For example: if X can take the values $1,5,9$ with probabilities $0.3,0.4,0.3$ respectively then by symmetry the mean would be 5

How can Idecide if a game is fair?

- Let X be the randomvariable that represents the gain/loss of a player in a game
- Xwill be negative if there is a loss
- Normally the expected gain or loss is calculated by subtracting the cost to play the game from the expected value of the prize
- If $E(X)$ is positive then it means the playercan expect to make a gain
- $\ddagger E(X)$ is negative then it means the player can expect to make a loss
- The game is called fair if the expected gain is 0
- $E(X)=0$

Worked example

Daphne pays $\$ 15$ to play a game where she wins a prize of $\$ 1, \$ 5, \$ 10$ or $\$ 100$. The rand om variable W represents the amount she wins and has the probability dis tribution shown in the following table:

W	1	5	10	100
$\mathrm{P}(W=W)$	0.35	0.5	0.05	0.1

a) Calculate the expected value of Daphne's prize.

$$
\begin{aligned}
& \text { Formula booklet } \begin{array}{|l|l|}
\hline \begin{array}{l}
\text { Expected value of a } \\
\text { discrete random } \\
\text { variable } X
\end{array} & \mathrm{E}(X)=\sum x \mathrm{P}(X=x) \\
\hline
\end{array} \\
& E(W)=\sum \omega P(W=\omega) \\
& =1 \times 0.35+5 \times 0.5+10 \times 0.05+100 \times 0.1 \\
& \text { Expected value }=\$ 13.35
\end{aligned}
$$

b) Determine whether the game is fair.

A game is fair is expected gain/loss is 0
Prize - cost
13. $35-15=-1.65$

Expected loss is $\$ 1.65$ so game is not fair

