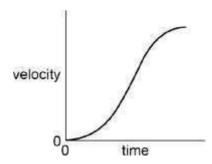
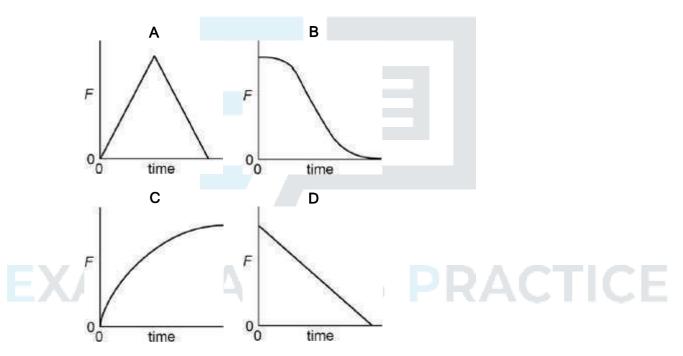
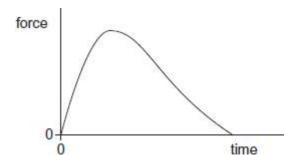


Linear Momentum & Conservation TOPIC QUESTIONS



- 1. An electric motor of input power 100 W raises a mass of 10 kg vertically at a steady speed of 0.5 ms⁻¹. What is the efficiency of the system?
 - **A** 5%
 - **B** 12%
 - **C** 50%
 - **D** 100%




2. The velocity of a vehicle varies with time as shown by the following graph.

Which graph below represents how the resultant force F on the car varies during the same time?

3. The graph shows how the force acting on a rocket varies with time.

Which one of the following is represented by the area under the graph?

- A distance travelled
- B gain in kinetic energyFor more help, please visit <u>www.exampaperspractice.co.uk</u>

- **C** change in velocity
- **D** change in momentum
- 4. A golf club strikes a stationary golf ball of mass 4.8×10^{-2} kg and the ball leaves the club with a speed of 95 m s⁻¹. If the average force exerted on the ball is 7800 N, how long are the ball and club in contact?
 - **A** $5.8 \times 10^{-4} \, \text{s}$
 - B $1.2 \times 10^{-2} \,\mathrm{s}$
 - **C** 0.51 s
 - **D** 0.58s

(Total 1 mark)

- 5. Water of density 1000 kg m $^{-3}$ flows out of a garden hose of cross-sectional area 7.2×10^{-4} m 2 at a rate of 2.0×10^{-4} m 3 per second. How much momentum is carried by the water leaving the hoseper second?
 - **A** 5.6 × 10⁻⁵ N s
 - **B** $5.6 \times 10^{-2} \,\mathrm{N}\,\mathrm{s}$
 - **C** 0.20 N s
 - **D** 0.72 N s
- 6. Which row is true for an elastic collision between two objects in an isolated system?

	Kinetic energy	Momentum
•		
Α	conserved	conserved
В	not conserved	conserved
С	conserved	not conserved
D	not conserved	not conserved

7. The drag force on a boat is kv^2 , where v is the speed and k = 64 kg m⁻¹. The boat's engine has a useful power output of 8000 W.

What is the maximum speed of the boat?

- **A** 0.2 m s^{-1}
- **A** 5 m s⁻¹
- **B** 11 m s⁻¹
- **D** 125 m s^{-1}

8. A railway truck of mass 2000 kg travelling horizontally at 1.5 m s⁻¹ collides with a stationary truckof mass 3000 kg.

After the collision they move together.

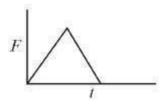
Which row is correct?

	Speed of the trucks immediately after collision / m s ⁻¹	Effect of collision on total kinetic energy
Α	0.6	no change
В	0.6	decrease
С	1.0	no change
D	1.0	decrease

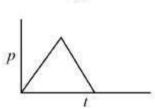
9. A body of constant mass falls freely due to gravity.

The rate of change of momentum of the body is equal to its

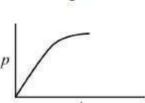
A kinetic energy.

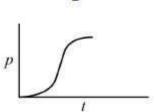

B mass.

C gravitational potential energy.


D weight.

10. The graph shows how the resultant force F on a football, which is initially at rest, varies with time




Which graph shows how the momentum p of the football varies with time t?

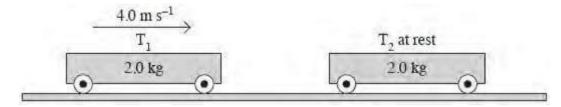
B

11. Which one of the following has the same unit as the rate of change of momentum?

- Α work
- В energy
- C acceleration
- D weight

12. The nucleus of a radioactive isotope X is at rest and decays by emitting an α particle so that a newnuclide Y is formed.

Which one of the following statements about the decay is correct?

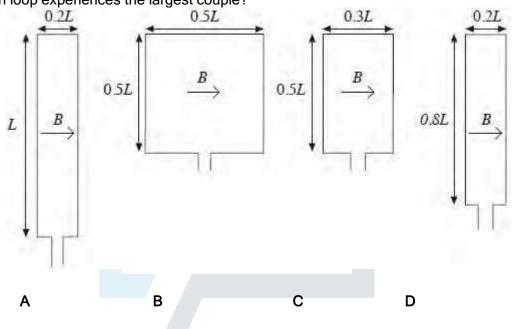


- A The momentum of Y is equal and opposite to the momentum of the α particle.
- **B** The momentum of Y is equal to the momentum of X.
- **C** The kinetic energy of Y is equal to the kinetic energy of the α particle.
- **D** The total kinetic energy is the same before and after the decay.

13. Trolley T_1 , of mass 2.0 kg, collides on a horizontal surface with trolley T_2 , which is also of mass 2.0 kg. The collision is elastic. Before the collision T was moving at 4.0 m s⁻¹ and T was at rest.

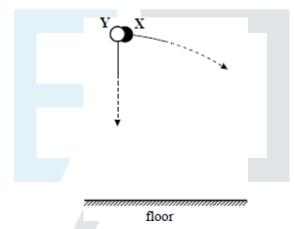
Which one of the following statements is

correct?Immediately after the collision


- A T_1 is at rest and T_2 moves at 4.0 m s⁻¹.
- **B** T_1 will rebound from T_2 at 4.0 m s⁻¹.
- c T_1 and T_2 will both move at 2.8 m s⁻¹.
- \mathbf{D} \mathbf{T}_1 and \mathbf{T}_2 will both move at 1.4 m s⁻¹.

14.Four rectangular loops of wire A, B, C and D are each placed in a uniform magnetic field of the sameflux density B. The direction of the magnetic field is parallel to the plane of the loops as shown.

When a current of 1 A is passed through each of the loops, magnetic forces act on them. Thelengths of the sides of the loops are as shown. Which loop experiences the largest couple?


EXAM PAPERS PRACTICE

15. Which of the following is a scalar quantity?

- **A** velocity
- **B** kinetic energy
- **C** force
- **D** momentum

- 16. A lunar landing module is descending to the Moon's surface at a steady velocity of 10.0 m s⁻¹. At a height of 120 m a small object falls from its landing gear. Assuming that the Moon's gravitational acceleration is 1.60 m s⁻², at what speed, in m s⁻¹ does the object strike the Moon?
 - A 22.0
 - **B** 19.6
 - **C** 16.8
 - **D** 10.0
- 17. A ball X is projected horizontally from a certain point at the same time as a ball Y of the same diameter but twice the mass is released from rest and allowed to fall vertically from the samelevel. Air resistance is negligible. Which one of the following will occur?

A Y will hit the floor

just before XB

APE

PRACTICE


will hit the floor just

before Y

- **C X** and **Y** will hit the floor at the same time
- **D Y** hits the floor while **X** is half way to the floor

18. A body X, moving with a velocity ν , collides elastically with a stationary body Y of equal mass

Which one of the following correctly describes the velocities of the two bodies after the collision?

	velocity of X	velocity of Y
Α	$\frac{v}{2}$	$\frac{v}{2}$
В	$-\frac{v}{2}$	$\frac{v}{2}$
С	- <i>V</i>	0
D	0	V

19. A car of mass M travelling at speed V comes to rest using its brakes. Energy is dissipated in the brake

discs of total mass m and specific heat capacity c. The rise in temperature of the brake discs can be estimated from

A
$$\frac{mV^2}{2Mc}$$
 B $\frac{2MV^2}{mc}$ C $\frac{MV^2}{2mc}$ D $\frac{2mc}{MV^2}$

20. Which of the following does not give a value in seconds?

- A capacitance × resistance
- $B = \frac{1}{\text{frequency}}$
- C half-life
- D power work