Linear Momentum \& Conservation TOPIC QUESTIONS

Level	AS Level
Subject	Physics
Exam Board	AQA
Paper Type	Multiple Choice
Time Allowed: 30min	

1. An electric motor of input power 100 W raises a mass of 10 kg vertically at a steady speed of $0.5 \mathrm{~ms}^{-1}$. What is the efficiency of the system?

A 5%
B 12%
C 50%
D 100\%

EXAM PAPERS PRACTICE

2. The velocity of a vehicle varies with time as shown by the following graph.

Which graph below represents how the resultant force F on the car varies during the same time?

3. The graph shows how the force acting on a rocket varies with time.

Which one of the following is represented by the area under the graph?
A distance travelled
B gain in kinetic energy
For more help, please visit www.exampaperspractice.co.uk

C change in velocity

D change in momentum
4. A golf club strikes a stationary golf ball of mass $4.8 \times 10^{-2} \mathrm{~kg}$ and the ball leaves the club with a speed of $95 \mathrm{~m} \mathrm{~s}^{-1}$. If the average force exerted on the ball is 7800 N , how long are the ball andclub in contact?

A $\quad 5.8 \times 10^{-4} \mathrm{~s}$
B $\quad 1.2 \times 10^{-2} \mathrm{~s}$
C $\quad 0.51 \mathrm{~s}$
D 0.58 s

EXAM PAPERS PRACTICE

5. Water of density $1000 \mathrm{~kg} \mathrm{~m}^{-3}$ flows out of a garden hose of cross-sectional area $7.2 \times 10^{-4} \mathrm{~m}^{2}$ at arate of $2.0 \times 10^{-4} \mathrm{~m}^{3}$ per second. How much momentum is carried by the water leaving the hoseper second?

A $\quad 5.6 \times 10^{-5} \mathrm{~N} \mathrm{~s}$
B $\quad 5.6 \times 10^{-2} \mathrm{~N} \mathrm{~s}$
C $\quad 0.20 \mathrm{Ns}$
D $\quad 0.72 \mathrm{Ns}$
6. Which row is true for an elastic collision between two objects in an isolated system?

	Kinetic energy	Momentum
A	conserved	conserved
B	not conserved	conserved
C	conserved	not conserved
D	not conserved	not conserved

7. The drag force on a boat is $k v^{2}$, where v is the speed and $k=64 \mathrm{~kg} \mathrm{~m}^{-1}$. The boat's engine has a useful power output of 8000 W .

What is the maximum speed of the boat?

A $\quad 0.2 \mathrm{~m} \mathrm{~s}^{-1}$
A $5 \mathrm{~m} \mathrm{~s}^{-1}$

B $\quad 11 \mathrm{~m} \mathrm{~s}^{-1}$

D $\quad 125 \mathrm{~m} \mathrm{~s}^{-1}$
8. A railway truck of mass 2000 kg travelling horizontally at $1.5 \mathrm{~m} \mathrm{~s}^{-1}$ collides with a stationary truckof mass 3000 kg .

After the collision they move together.
Which row is correct?

	Speed of the trucks immediately after collision $/ \mathrm{m} \mathrm{s}^{-1}$	Effect of collision on total kinetic energy
A	0.6	no change
B	0.6	decrease
C	1.0	no change
D	1.0	decrease

9. A body of constant mass falls freely due to gravity.

The rate of change of momentum of the body is equal to its

A kinetic energy.
B mass.

C gravitational potential energy.

D weight.
10. The graph shows how the resultant force F on a football, which is initially at rest, varies with time t.

Which graph shows how the momentum p of the football varies with time t ?

11. Which one of the following has the same unit as the rate of change of momentum?

A work
B energy
C acceleration
D weight
12. The nucleus of a radioactive isotope X is at rest and decays by emitting an α particle so that a newnuclide Y is formed. Which one of the following statements about the decay is correct?

A The momentum of Y is equal and opposite to the momentum of the α particle.

B The momentum of Y is equal to the momentum of X .

C The kinetic energy of Y is equal to the kinetic energy of the α particle.
D The total kinetic energy is the same before and after the decay.

13. Trolley T_{1}, of mass 2.0 kg , collides on a horizontal surface with trolley T_{2}, which is also of mass 2.0 kg . The collision is elastic. Before the collision T was moving at $4.0 \mathrm{~m} \mathrm{~s}^{-1}$ and T was at rest.

Which one of the following statements is correct? Immediately after the collision

A $\quad \mathrm{T}_{1}$ is at rest and T_{2} moves at $4.0 \mathrm{~m} \mathrm{~s}^{-1}$.
B $\quad \mathrm{T}_{1}$ will rebound from T_{2} at $4.0 \mathrm{~m} \mathrm{~s}^{-1}$.
C T_{1} and T_{2} will both move at $2.8 \mathrm{~m} \mathrm{~s}^{-1}$.
D T_{1} and T_{2} will both move at $1.4 \mathrm{~m} \mathrm{~s}^{-1}$.
14.Four rectangular loops of wire A, B, C and D are each placed in a uniform magnetic field of the sameflux density B. The direction of the magnetic field is parallel to the plane of the loops as shown.

When a current of 1 A is passed through each of the loops, magnetic forces act on them. Thelengths of the sides of the loops are as shown. Which loop experiences the largest couple?

15.Which of the following is a scalar quantity?

A velocity
B kinetic energy

C force

D momentum
16. A lunar landing module is descending to the Moon's surface at a steady velocity of 10.0 m s^{-1}. At a height of 120 m a small object falls from its landing gear. Assuming that the Moon's gravitational acceleration is $1.60 \mathrm{~m} \mathrm{~s}^{-2}$, at what speed, in $\mathrm{m} \mathrm{s}^{-1}$ does the object strike the Moon?

A 22.0
B 19.6
C 16.8
D 10.0
17. A ball X is projected horizontally from a certain point at the same time as a ball Y of the same diameter but twice the mass is released from rest and allowed to fall vertically from the samelevel. Air resistance is negligible. Which one of the following will occur?

\square

A Y will hit the floor
just before XB
will hit the floor just
before Y
C \mathbf{X} and \mathbf{Y} will hit the floor at the same time
D \mathbf{Y} hits the floor while \mathbf{X} is half way to the floor
18. A body X , moving with a velocity V, collides elastically with a stationary body Y of equal mass

Which one of the following correctly describes the velocities of the two bodies after the collision?

	velocity of X	velocity of Y
A	$\frac{v}{2}$	$\frac{v}{2}$
B	$-\frac{v}{2}$	$\frac{v}{2}$
C	$-v$	0
D	0	v

19. A car of mass M travelling at speed V comes to rest using its brakes. Energy is dissipated in the brake
discs of total mass m and specific heat capacity C. The rise in temperature of the brake discs canbe estimated from
$A \quad \frac{m V^{2}}{2 M c}$
B $\frac{2 M V^{2}}{m c}$
$\mathrm{C} \frac{M V^{2}}{2 m c}$
D $\frac{2 m c}{M V^{2}}$
20. Which of the following does not give a value in seconds?

A capacitance \times resistance
B $\frac{1}{\text { frequency }}$
C half-life
D $\frac{\text { power }}{\text { work }}$

