Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

### 4.5 Binomial Distribution

# IB Maths - Revision Notes 

### 4.5.1 The Binomial Distribution

## Properties of Binomial Distribution

## What is a binomial distribution?

- Abinomial distribution is a discrete probability distribution
- A discrete random variable $X$ follows a binomial distribution if it counts the number of successes when an experiment satisfies the following conditions:
- There are a fixed finite number of trials ( $n$ )
- The outcome of each trial is independent of the outcomes of the othertrials
- There are exactly two outcomes of each trial (success or failure)
- The probability of success is constant ( $p$ )
- If $X$ follows a binomial distribution then it is denoted $X \sim \mathrm{~B}(n, p)$
- $n$ is the number of trials
- pis the probability of success
- The probability of failure is $\mathbf{1 - p}$ which is sometimes denoted as $\boldsymbol{q}$
- The formula for the probability of $r$ successfultrials is given by:
- $\mathrm{P}(X=r)={ }^{n} C_{r} \times p^{r}(1-p)^{n-r_{\text {for }} r=0,1,2, \ldots, n}$
- ${ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$ where $n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1$
- You will be expected to use the distribution function on your GDC to calculate probabilities with the bino mial distribution


## What are the important properties of a binomial distribution?

- The expected number (mean) of successful trials is


## © 2024 Exam Papers Practice

$$
\mathrm{E}(X)=n p
$$

- You are given this in the formula booklet
- The variance of the number of successful trials is

$$
\operatorname{Var}(X)=n p(1-p)
$$

- You are given this in the formula booklet
- Square root to get the standard deviation
- The distribution can be represented visually using a vertic al line graph
- If $p$ is close to 0 then the graph has a tail to the right
- If pis close to 1 then the graph has a tail to the left
- If $p$ is close to 0.5 then the graph is roughly symmetrical
- If $p=0.5$ then the graph is symmetrical
E旦
Exam Papers Practice
$x \sim B(10,0.2)$



$$
x \sim B(10,0.8)
$$



Page 2 of 8
For more help visit our website www.exampaperspractice.co.uk

## Modelling with Binomial Distribution

## Howdolset up a binomialmodel?

- Identify what a trial is in the scenario
- For example: rolling a dice, flipping a coin, checking hair colour
- Identify what the successfuloutcome is in the scenario
- For example: rolling a 6, landing on tails, having black hair
- Identify the parameters
- $n$ is the number of trials and $p$ is the probability of success in each trial
- Make sure you clearly state what your random variable is
- For example, let $X$ be the number of students in a class of 30 with black hair


## What can be modelled using a binomial distribution?

- Anything that satisfies the four conditions
- For example: let $T$ be the number of times a fair coin lands on tails when flipped 20 times:
- A trial is flipping a co in: There are 20 trials so $\boldsymbol{n = 2 0}$
- We can assume each coin flip does not affect subsequent co in flips: they are independent
- A success is when the coin lands on tails:Two outcomes - tails or not tails (heads)
- The coin is fair: The probability of tails is constant with $\boldsymbol{p = 0 . 5}$
- Sometimes it might seem like there are more than two outcomes
- For example: let $Y$ be the number of yellow cars that are in a car park full of 100 cars
- Although there are more than two possible colours of cars, here the trial is whether a car is yellow so there are two outcomes (yellow ornot yellow)
- $Y$ would still need to fulfil the otherconditions in order to follow a binomial distribution
- Sometimes a sample may be taken fromapopulation
- For example: $30 \%$ of people in a city have blue eyes, a sample of 30 people from the city is taken and $X$ is the number of them with blue eyes
- As long as the population is large and the sample is random then it can be assumed that each perso $n$ has a 30\% chance of having blue eyes


## What can not be modelled using a binomial distribution?

- Anything where the number of trials is not fixed or is infinite
- The number of emails received in an hour
- The number of times a coin is flipped until it lands on heads
- Anything where the outcome of one trial affects the outcome of the other trials
- The number of caramels that a personeats when theyeat 5 sweets from a bag containing 6 caramels and 4 marshmallows
- If you eat a caramel for your first sweet then there are less caramels left in the bag when you choose your second sweet
- Anything where there are more than two outcomes of a trial

Page 3 of 8

- A person's shoe size
- The number a dice lands on when rolled
- Anything where the probability of success changes
- The number of times that a person can swim a length of a swimming pool in under a minute when swimming 50 lengths
- The probability of swimming a lap in under a minute will decrease as the person gets tired
- The probability is not constant


## - Exam Tip

- An exam question might involve different types of distributions so make it clear which distribution is being used for each variable


Exam Papers Practice
© 2024 Exam Papers Practice

## ( Worked example

It is known that 8\% of a large po pulation are immune to a particular virus. Mark takes a sample of 50 people from this po pulation. Mark uses a binomial mo del for the number of people in his sample that are immune to the virus.
a) State the distribution that Mark uses.

A trial is checking if a person is immune to the virus
A success is if the person is immune.
Let $X$ be the number of people in the sample immune to the virus

$$
X \sim B(50,0.08)
$$

Number of 4 Probability of
people in sample
b) State two assumptions that Mark must make in order to use a binomial model.

Mark needs to assume that:

- each person in the population has an $8 \%$ chance of being immune - the sample is random and the people are independent a person being immune does not affect the immunity of others


## Copyright

immunity of others
© 2024 Exam Papers
For example:
If all 50 came from the same family then
they would not be independent
c) Calculated the expected number of people in the sample that are immune to the virus.


### 4.5.2 Calculating Binomial Probabilities

## Calculating Binomial Probabilities

Throughout this section we will use the random variable $X \sim \mathrm{~B}(n, p)$. For rino mial, the probability of $X$ taking anon-integer or negative value is always zero. Therefore any values of $X$ mentioned in this section will be assumed to be non-negative integers.

## Howdolcalculate $\mathrm{P}(X=x)$ : the probability of a single value for a binomial distribution?

- You should have a GDC that can calculate binomial probabilities
- You want to use the "Binomial Probability Distribution" function
- This is sometimes shortened to BPD, Binomial PD orBinomial Pdf
- You will need to enter:
- The ' $x$ 'value - the value of $x$ for which yo u want to find $\mathrm{P}(X=x)$
- The ' $n$ ' value - the number of trials
- The ' $p$ 'value - the probability of success
- Some calculators will give you the option of listing the probabilities for multiple values of $\boldsymbol{x}$ at once
- There is a formula that you can use but you are expected to be able to use the distribution function on your GDC
- $\mathrm{P}(X=x)={ }^{n} \mathrm{C}_{x} \times p^{x}(1-p)^{n-x}$
- ${ }^{n} \mathrm{C}_{X}=\frac{n!}{r!(n-r)!}$


## How do Icalculate $\mathrm{P}(a \leq X \leq b)$ : the cumulative probabilities for a binomial distribution?

- You should have a GDC that can calculate cumulative bino mial probabilities
- Most calculators will find $\mathrm{P}(a \leq X \leq b)$
- Some calculators can only find $\mathrm{P}(X \leq b)$
- The identities below will help in this case
- You should use the "Binomial Cumulative Distribution" function
- This is sometimes shortened to BCD, Binomial CD or Binomial Cdf
- You will need to enter:
- The lowervalue - this is the value a
- This can be zero in the case $\mathrm{P}(X \leq b)$
- The uppervalue - this is the value $b$
- This can be $n$ in the case $\mathrm{P}(X \geq a)$
- The ' $n$ ' value - the number of trials
- The ' $p$ ' value - the probability of success


## Howdo Ifind probabilities if my GDC only calculates $\mathrm{P}(X \leq x)$ ?

- To calculate $\mathrm{P}(X \leq x)$ just enter $x$ into the cumulative distribution function
- To calculate $\mathrm{P}(X<x)$ use:
- $\mathrm{P}(X<x)=\mathrm{P}(X \leq X-1)$ which works when $X$ is a bino mial rand om variable
- $\mathrm{P}(X<5)=\mathrm{P}(X \leq 4)$
- To calculate $\mathrm{P}(X>x)$ use:
- $\mathrm{P}\left(X>_{X}\right)=1-\mathrm{P}(X \leq X)$ which works for any random variable $X$
- $\mathrm{P}(X>5)=1-\mathrm{P}(X \leq 5)$
- To calculate $\mathrm{P}(X \geq x)$ use:
- $\mathrm{P}(X \geq x)=1-\mathrm{P}(X \leq x-1)$ which works when $X$ is a bino mial random variable
- $\mathrm{P}(X \geq 5)=1-\mathrm{P}(X \leq 4)$
- To calculate $\mathrm{P}(a \leq X \leq b)$ use:
- $\mathrm{P}(a \leq X \leq b)=\mathrm{P}(X \leq b)-\mathrm{P}(X \leq a-1)$ which works when $X$ is a bino mial rand om variable
- $\mathrm{P}(5 \leq X \leq 9)=\mathrm{P}(X \leq 9)-\mathrm{P}(X \leq 4)$


## What if an inequality does not have the equals sign (strict inequality)?

- For a binomial dis tribution (as it is discrete) you could rewrite all strict inequalities (< and >) as weak inequalities ( $\leq$ and $\geq$ ) by using the identities for a bino mial distribution
- $\mathrm{P}(X<x)=\mathrm{P}(X \leq x-1)$ and $\mathrm{P}(X>x)=\mathrm{P}(X \geq x+1)$
- For example: $\mathrm{P}(X<5)=\mathrm{P}(X \leq 4)$ and $\mathrm{P}(X>5)=\mathrm{P}(X \geq 6)$
- It helps to think about the range of int egers you want
- Identifythesmallest and biggest integers in the range
- If your range has no minimum ormaximum then use 0 or $n$
- $\mathrm{P}(X \leq b)=\mathrm{P}(0 \leq X \leq b)$
- $\mathrm{P}(X \geq a)=\mathrm{P}(a \leq X \leq n)$
- $\mathrm{P}(a<X \leq b)=\mathrm{P}(a+1 \leq X \leq b)$
- $\mathrm{P}(5<X \leq 9)=\mathrm{P}(6 \leq X \leq 9)$
- $\mathrm{P}(a \leq X<b)=\mathrm{P}(a \leq X \leq b-1)$
- $P(5 \leq X<9)=P(5 \leq X \leq 8)$
- $\mathrm{P}(a<X<b)=\mathrm{P}(a+1 \leq X \leq b-1)$
- $P(5<X<9)=P(6 \leq X \leq 8)$


## (9) Exam Tip

- If the question is in context then write down the inequality as well as the final answer
- This means you still might gain a mark even if you accidentally type the wrong numbers into your GDC


## Worked example

The random variable $X \sim \mathrm{~B}(40,0.35)$. Find:
i) $\quad \mathrm{P}(X=10)$.

Identify $n$ and $p \quad n=40 \quad p=0.35$
Use binomial probability distribution on $G D C$ $P(X=10)=0.057056$.

$$
P(x=10)=0.057 \quad(3 \mathrm{sf})
$$

ii) $\quad \mathrm{P}(X \leq 10)$.

Identify upper and lower values
$P(X \leqslant 10)=P(0 \leqslant x \leqslant 10)$
Use binomial cumulative distribution on $G D C$ $P(X \leq 10)=0.121491 \ldots$

$$
P(x \leqslant 10)=0.121 \text { (3sf) }
$$

iii) $\quad \mathrm{P}(8<X<15)$.

Identify upper and lower values
$P(8<x<15)=P(9 \leqslant x \leqslant 14)$
Use binomial cumulative distribution on GDC $P(9 \leqslant x \leqslant 14)=0.541827 \ldots$
$P(8<x<15)=0.542$ ( $3 s f$ )

