Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

4.4 Probability Distributions

4.4.1 Discrete Probability Distributions

Discrete Probability Distributions

What is a discrete random variable?

- A rand om variable is a variable whose value depends on the outcome of a random event
- The value of the random variable is not known until the event is carried out (this is what is meant by 'random' in this case)
- Random variables are denoted using upper case letters (X, Y, etc)
- Particular outcomes of the event are denoted using lower case letters (X, Y, etc)
- $\mathrm{P}(X=x)$ means "the probability of the rand om variable X taking the value X "
- A discrete random variable (often abbreviated to DRV) can only take cert ain values within a set
- Discrete random variables usually count something
- Discrete random variables usually can only take a finite number of values but it is possible that it can take an infinite number of values (see the examples below)
- Examples of discrete random variables include:
- The number of times a coin lands on heads when flipped 20 times
- this has a finite number of outcomes: $\{0,1,2, \ldots, 20\}$
- The number of emails a manager receives within an hour
- this has an infinite number of outcomes:\{1,2,3,...\}
- The number of times a dice is rolled untilit lands on a 6
- this has an infinite number of outcomes: $\{1,2,3, \ldots\}$
- The numberthat a dice lands on when rolled once
- this has a finite number of outcomes: $\{1,2,3,4,5,6\}$

What is a probability distribution of a discrete random variable?

-4 A discrete probability distribution fully describes all the values that a discrete random variable can take along with their asso ciated probabilities

- This can be given in a table
- Orit can be given as a function (called a discrete probability distribution function or "pdf")
- Theycan be represented by vertical line graphs (the possible values for along the horiz ontal axis and the probability on the vertical axis)
- The sum of the probabilities of all the values of a discrete random variable is 1
- This is usually written $\sum \mathrm{P}(X=x)=1$
- A discrete uniform distribution is one where the randomvariable takes a finite number of values each with an equal probability
- If there are n values then the pro bability of each one is $\frac{1}{n}$

Exam Papers Practice

LET x BE THE NUMBER THAT THE SPINNER LANDS ON

How do Icalculate probabilities using a discrete probability distribution?

- First draw a table to represent the probability distribution

Copyright. If it is given as a function then find each probability
If anyprobabilities are unknown then use algebra to represent them

- Form an equation using $\sum \mathrm{P}(X=x)=1$
- Add to gether all the probabilities and make the sum equal to 1
- To find $\mathrm{P}(X=k)$
- If k is a possible value of the random variable X then $\mathrm{P}(X=k)$ will be given in the table
- If k is not a possible value then $\mathrm{P}(X=k)=0$
- To find $\mathrm{P}(X \leq k)$
- Identify all possible values, X_{i}, that $X_{\text {can take which satisfy } X_{i} \leq k}$
- Add to gether all their corresponding probabilities
- $\mathrm{P}(X \leq k)=\sum_{x_{i} \leq k} \mathrm{P}\left(X=X_{i}\right)$
- Some mathematicians use the notation $\mathrm{F}(X)$ to represent the cumulative distribution
- $\mathrm{F}(x)=\mathrm{P}(X \leq x)$
- Using a similar method you can find $\mathrm{P}(X<k), \mathrm{P}(X>k)$ and $\mathrm{P}(X \geq k)$
- As all the probabilities add up to lyou can form the following equivalent equations:
- $\mathrm{P}(X<k)+\mathrm{P}(X=k)+\mathrm{P}(X>k)=1$
- $\mathrm{P}(X>k)=1-\mathrm{P}(X \leq k)$
- $\mathrm{P}(X \geq k)=1-\mathrm{P}(X<k)$

How do Iknow which inequality to use?

- $\mathrm{P}(X \leq k)$ would be used for phrases such as:
- At most, no greaterthan, etc
- $\mathrm{P}(X<k)$ would be used for phrases such as:
- Fewerthan
- $\mathrm{P}(X \geq k)$ would be used for phrases such as:
- At least, no fewerthan, etc
- $\mathrm{P}(X>k)$ would be used for phrases such as:
- Greaterthan,etc

Exam Papers Practice
Copyright
© 2024 Exam Papers Practice

Worked example

The probability distribution of the discrete random variable X is given by the function

$$
\mathrm{P}(X=x)=\left\{\begin{array}{cl}
k x^{2} & x=-3,-1,2,4 \\
0 & \text { otherwise } .
\end{array}\right.
$$

a)

Show that $k=\frac{1}{30}$.
Construct a table

x	-3	-1	2	4
$P(X=x)$	$9 k$	k	$4 k$	$16 k$

Substitute in the values of x eeg. $P(X=-3)=k(-3)^{2}=9 k$

The probabilities add up to 1
$9 k+k+4 k+16 k=1$
$30 k=1$

$$
k=\frac{1}{30}
$$

b) Calculate $\mathrm{P}(X \leq 3)$.

Substitute k into the probabilities

x	-3	-1	2	4
$P(X=x)$	$\frac{3}{10}$	$\frac{1}{30}$	$\frac{2}{15}$	$\frac{8}{15}$

© 2024 Exam Papers Practice

$$
\begin{aligned}
& X \leq 3: X=-3,-1,2 \\
& P(X \leq 3)=P(x=-3)+P(x=-1)+P(X=2) \\
& \\
& =\frac{3}{10}+\frac{1}{30}+\frac{2}{15} \\
& P(X \leq 3)=\frac{7}{15}
\end{aligned}
$$

4.4.2 Me an \& Variance

Expected Values $\mathrm{E}(\mathrm{X})$

What does $E(X)$ mean and how do Icalculate $E(X)$?

- $E(X)$ means the expected value orthe mean of a random variable X
- The expected value does not need to be an obtainable value of X
- For example: the expected value number of times a coin will land on tails when flipped 5 times is 2.5
- For a discrete rand om variable, it is calculated by:
- Multiplying each value of X with its corresponding probability
- Adding all these terms together

$$
\mathrm{E}(X)=\sum x \mathrm{P}(X=x)
$$

- This is given in the formula booklet
- Look out for symmetrical distributions (where the values of X are symmetrical and their probabilities are symmetrical) as the mean of these is the same as the median
- For example: if X can take the values $1,5,9$ with probabilities $0.3,0.4,0.3$ respectively then by symmetry the mean would be 5

How can Idecide if a game is fair?

- Let X be the random variable that represents the gain/loss of a player in a game
- Xwill be negative if there is a loss
- Normally the expected gain or loss is calculated bysubtracting the cost to play the game from the expected value of the prize
- If $E(X)$ is positive then it means the playercan expect to make a gain
- If $E(X)$ is negative then it means the player can expect to make a loss
- The game is called fair if the expected gain is 0
- $\mathrm{E}(X)=0$

Worked example

Daphne pays $\$ 15$ to play game where she wins a prize of $\$ 1, \$ 5, \$ 10$ or $\$ 100$. The rand om variable W represents the amount she wins and has the probability distribution shown in the following table:

W	1	5	10	100
$\mathrm{P}(W=W)$	0.35	0.5	0.05	0.01

a) Calculate the expected value of Daphne's prize.

$$
\begin{aligned}
& \text { Formula booklet } \begin{aligned}
& \begin{array}{|l}
\begin{array}{l}
\text { Expected value of a } \\
\text { discrete r random } \\
\text { variable } X
\end{array}
\end{array} \mathrm{E}(X)=\sum \times \mathrm{P}(X=x) \\
& \hline
\end{aligned} \\
& \begin{aligned}
E(W) & =\sum \omega P(W=\omega) \\
& =1 \times 0.35+5 \times 0.5+10 \times 0.05+100 \times 0.1
\end{aligned} \\
& \text { Expected value }=\$ 13.35
\end{aligned}
$$

b) Determine whether the game is fair.

A game is fair is expected gain/loss is 0
Prize - cost
13. $35-15=-1.65$

Expected loss is $\$ 1.65$ so game is not fair

Variance $\operatorname{Var}(X)$

What does $\operatorname{Var}(\mathrm{X})$ mean and how do Icalculate $\operatorname{Var}(\mathrm{X})$?

- $\operatorname{Var}(X)$ means the variance of a random variable X
- The stand ard deviation is the square root of the variance
- This provides a measure of the spread of the outcomes of X
- The variance and standard deviation can never be negative
- The variance of X is the mean of the squared difference between X and the mean

$$
\operatorname{Var}(X)=\mathrm{E}(X-\mu)^{2}
$$

- This is given in the formula booklet
- This formula can be rearranged into the more useful form:

$$
\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}
$$

- This is given in the formula booklet
- Compare this formula to the formula for the variance of a set of data
- This formula works for both discrete and continuous X

Howdolcalculate $E\left(X^{2}\right)$ for discrete X ?

- $E\left(X^{2}\right)$ means the expected value or the mean of the random variable defined as $\mathbf{X}^{\mathbf{2}}$
- For a discrete rand om variable, it is calculated by:
- Squaring each value of X to get the values of X^{2}
- Multiplying each value of X^{2} with its corresponding probability
- Adding all these terms to gether
- $\mathrm{E}\left(X^{2}\right)=\sum x^{2} \mathrm{P}(X=x)$
- This is given in the formula booklet as part of the formula for $\operatorname{Var}(X)$
- $\operatorname{Var}(X)=\sum x^{2} \mathrm{P}(X=x)-\mu^{2}$
- $E(f(X)$) can be found in a similar way

Is $E\left(X^{2}\right)$ equal to $E(X)^{2}$?

- Definitely not!
- They are only equal if X can onlytake one value
- $E\left(X^{2}\right)$ is the mean of the values of X^{2}
- $E(X)^{2}$ is the square of the mean of the values of X
- To see the difference
- Imagine a rand om variable X that can only take 1 and - 1 with equal chance
- $E(X)=0$ so $E(X)^{2}=0$
- The square values are 1 and 1 so $E\left(X^{2}\right)=1$

Exam Papers Practice

O. Exam Tip

- In an exam you can enter the probability distribution into your GDC using the statistics mode
- Enter the possible values as the data
- Enter the probabilities as the frequencies
- You can then calculate the mean and variance just like you would with data

Worked example

The score on a game is represented by the random variable S defined below.

s	0	1	2	10
$\mathrm{P}(S=s)$	0.4	0.3	0.25	0.05

Calculate $\operatorname{Var}(S)$.
Calculate $E(s)$
Formula booklet $\left.\begin{array}{c|c|}\hline \text { Expected value of } \sigma \\ \text { discrete random variable } X\end{array}\right] \mathrm{E}(X)=\sum \times \mathrm{P}(X=x)$.
$E(s)=\sum_{s P} P(s=s)=0 \times 0.4+1 \times 0.3+2 \times 0.25+10 \times 0.05=1.3$
Calculate $E\left(s^{2}\right)$

Calculate $\operatorname{Var}(s)$

$\operatorname{Var}(S)=E\left(s^{2}\right)-[E(s)]^{2}=6.3-1.3^{2}$
$\operatorname{Var}(s)=4.61$

Transformation of a Single Variable

How do Icalculate the expected value and variance of a transformation of X ?

- Suppose X is transformed by the function f to form a new variable $T=f(X)$
- This means the function f is applied to all possible values of X
- Create a new probability distributiontable
- The top row contains the values $t_{i}=f\left(X_{i}\right)$
- The bottom row still contains the values $\mathrm{P}\left(X=X_{i}\right)$ which are unchanged as:
- $\mathrm{P}\left(X=x_{i}\right)=\mathrm{P}\left(f(X)=f\left(x_{i}\right)\right)=\mathrm{P}\left(T=t_{i}\right)$
- Some values of Tmay be equal so you can add their probabilities to gether
- The mean is calculated in the same way
- $\mathrm{E}(T)=\sum t \mathrm{P}(X=x)$
- The variance is calculated using the same formula
- $\operatorname{Var}(T)=\mathrm{E}\left(T^{2}\right)-[\mathrm{E}(T)]^{2}$

Are there anyshortcuts?

- There are formulae which can be used if the transformation is linear
- $T=a X+b$ where a and b are constants
- If the transformation is not linear then there are no shortcuts
- You will have to first find the probability distribution of T

What are the formulae for $E(a X+b)$ and $\operatorname{Var}(a X+b)$?

- If a and b are constants then the following formulae are true:
- $\mathrm{E}(a X+b)=a \mathrm{E}(X)+b$
- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
. These are given in the formula bo oklet
- This is the same as linear transformations of data
- The mean is affected by multiplication and addition/subtraction
- The variance is affected by multiplication but not addition/subtraction
- Remember division can be written as a multiplication
- $\frac{X}{a}=\frac{1}{a} X$

Worked example

X is a random variable such that $\mathrm{E}(X)=5$ and $\operatorname{Var}(X)=4$.
Find the value of:
(i) $\mathrm{E}(3 X+5)$
(ii) $\operatorname{Var}(3 X+5)$
(iii) $\operatorname{Var}(2-X)$.

Exam Papers D)

Copyright
© 2024 Exam Papers Practice

