

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

4.4 Probability Distributions

IB Maths - Revision Notes

AA HL

4.4.1 Discrete Probability Distributions

Discrete Probability Distributions

What is a discrete random variable?

- A random variable is a variable whose value depends on the outcome of a random event
 - The value of the random variable is not known until the event is carried out (this is what is meant by 'random' in this case)
- Random variables are denoted using upper case letters (X, Y, etc)
- Particular outcomes of the event are denoted using lower case letters (X, Y, etc)
- P(X=x) means "the probability of the random variable X taking the value X"
- A discrete random variable (often abbreviated to DRV) can only take certain values within a set
 - Discrete random variables usually count something
 - Discrete random variables usually can only take a finite number of values but it is possible that
 it can take an infinite number of values (see the examples below)
- Examples of discrete random variables include:
 - The number of times a coin lands on heads when flipped 20 times
 - this has a finite number of outcomes: {0,1,2,...,20}
 - The number of emails a manager receives within an hour
 - this has an infinite number of outcomes: {1,2,3,...}
 - The number of times a dice is rolled until it lands on a 6
 - this has an infinite number of outcomes: {1,2,3,...}
 - The number that a dice lands on when rolled once
 - this has a finite number of outcomes: {1,2,3,4,5,6}

What is a probability distribution of a discrete random variable?

- opyright
- © 2024 A discrete probability distribution fully describes all the values that a discrete random variable can take along with their associated probabilities
 - This can be given in a table
 - Or it can be given as a **function** (called a discrete probability distribution function or "pdf")
 - They can be represented by **vertical line graphs** (the possible values for along the horizontal axis and the probability on the vertical axis)
 - The **sum of the probabilities** of **all the values** of a discrete random variable is **1**
 - This is usually written $\sum P(X=x)=1$
 - A discrete uniform distribution is one where the random variable takes a finite number of values each with an equal probability
 - If there are n values then the probability of each one is $\frac{1}{n}$

LET χ BE THE NUMBER THAT THE SPINNER LANDS ON

x	-2	0	1 3	5
P(X = x)	1/4	1/8	1 8	1/2

$$P(X=x) = \begin{cases} \frac{1}{8} & x = 0, \frac{1}{3} \\ \frac{1}{4} & x = -2 \\ \frac{1}{2} & x = 5 \\ 0 & \text{OTHERWISE} \end{cases}$$

How do I calculate probabilities using a discrete probability distribution?

- First draw a table to represent the probability distribution
- Copyright If it is given as a function then find each probability
- © 2024 Exallf any probabilities are unknown then use algebra to represent them
 - Forman equation using $\sum P(X=x)=1$
 - Add together all the probabilities and make the sum equal to 1
 - To find P(X = k)
 - ullet If k is a possible value of the random variable X then $\mathrm{P}(X=k)$ will be given in the table
 - If k is not a possible value then P(X=k)=0
 - To find $P(X \le k)$
 - Identify all possible values, X_i , that X can take which satisfy $X_i \le k$
 - Add together all their corresponding probabilities
 - $P(X \le k) = \sum_{X_i \le k} P(X = X_i)$
 - Some mathematicians use the notation F(x) to represent the cumulative distribution
 - $F(x) = P(X \le x)$
 - Using a similar method you can find $\mathrm{P}(X < k)$, $\mathrm{P}(X > k)$ and $\mathrm{P}(X \ge k)$

- As all the probabilities add up to 1 you can form the following equivalent equations:
 - P(X < k) + P(X = k) + P(X > k) = 1
 - $P(X > k) = 1 P(X \le k)$
 - $P(X \ge k) = 1 P(X < k)$

How do I know which inequality to use?

- $P(X \le k)$ would be used for phrases such as:
 - At most, no greater than, etc
- P(X < k) would be used for phrases such as:
 - Fewerthan
- $P(X \ge k)$ would be used for phrases such as:
 - At least, no fewer than, etc
- P(X > k) would be used for phrases such as:
 - Greaterthan, etc

Papers Practice

The probability distribution of the discrete random variable X is given by the function

$$P(X=x) = \begin{cases} kx^2 & x = -3, -1, 2, 4 \\ 0 & \text{otherwise.} \end{cases}$$

Show that $k = \frac{1}{30}$.

Construct a table

b) Calculate $P(X \le 3)$.

Substitute k into the probabilities

X	-3)-I	2	4
P(X=x)	3	30	2	8 15

ers Practice

© 2024 Exam Papers Practice

$$X \le 3 : X = -3, -1, 2$$

$$P(X \le 3) = P(X = -3) + P(X = -1) + P(X = 2)$$

= $\frac{3}{10} + \frac{1}{30} + \frac{2}{15}$

$$P(X \le 3) = \frac{7}{15}$$

4.4.2 Mean & Variance

Expected Values E(X)

What does E(X) mean and how do I calculate E(X)?

- E(X) means the expected value or the mean of a random variable X
 - The expected value does not need to be an obtainable value of X
 - For example: the expected value number of times a coin will land on tails when flipped 5 times is 2.5
- For a **discrete** random variable, it is calculated by:
 - Multiplying each value of X with its corresponding probability
 - Adding all these terms together

$$E(X) = \sum_{X} P(X = X)$$

- This is given in the **formula booklet**
- Look out for **symmetrical** distributions (where the values of X are symmetrical and their probabilities are symmetrical) as the mean of these is the same as the median
 - For example: if X can take the values 1, 5, 9 with probabilities 0.3, 0.4, 0.3 respectively then by symmetry the mean would be 5

How can I decide if a game is fair?

- Let X be the random variable that represents the **gain/loss** of a player in a game
 - Xwill be **negative** if there is a **loss**
- Normally the expected gain or loss is calculated by subtracting the cost to play the game from the expected value of the prize
- Copy $\P_{G} = \{f(X) \text{ is } positive \text{ then it means the player can } expect to make a gain }$
- If E(X) is **negative** then it means the player can **expect to make a loss**
 - The game is called fair if the expected gain is 0
 - E(X) = O

Daphne pays \$15 to play a game where she wins a prize of \$1, \$5, \$10 or \$100. The random variable $\it W$ represents the amount she wins and has the probability distribution shown in the following table:

W	1	5	10	100
P(W=w)	0.35	0.5	0.05	0.01

a) Calculate the expected value of Daphne's prize.

Formula booklet
$$\frac{\text{Expected value of a discrete random variable } X}{\text{E}(W) = \sum_{w} P(W = w)}$$

$$= |x| 0.35 + 5 \times 0.5 + |0 \times 0.05| + |00 \times 0.1|$$
Expected value = \$13.35

b) Determine whether the game is fair.

Expected loss is \$1.65 so game is not fair

Variance Var(X)

What does Var(X) mean and how do I calculate Var(X)?

- Var(X) means the variance of a random variable X
 - The standard deviation is the square root of the variance
 - This provides a **measure of the spread** of the outcomes of X
 - The variance and standard deviation can **never be negative**
- The variance of X is the **mean of the squared difference** between X and the mean

$$Var(X) = E(X - \mu)^2$$

- This is given in the formula booklet
- This formula can be rearranged into the more useful form:

$$Var(X) = E(X^2) - [E(X)]^2$$

- This is given in the **formula booklet**
 - Compare this formula to the formula for the variance of a set of data
- This formula works for both **discrete** and **continuous** X

How do I calculate E(X2) for discrete X?

- E(X²) means the expected value or the mean of the random variable defined as X²
- For a discrete random variable, it is calculated by:
 - Squaring each value of X to get the values of X²
 - Multiplying each value of X² with its corresponding probability
 - Adding all these terms together

•
$$E(X^2) = \sum X^2 P(X = X)$$

This is given in the formula booklet as part of the formula for Var(X)

•
$$Var(X) = \sum x^2 P(X = x) - \mu^2$$

© 2024 E(f(X)) can be found in a similar way

Is $E(X^2)$ equal to $E(X)^2$?

- Definitely not!
 - They are only equal if X can only take one value
- E(X²) is the mean of the values of X²
- E(X)² is the **square of the mean of the values of X**
- To see the difference
 - Imagine a random variable X that can only take 1 and -1 with equal chance
 - E(X) = 0 so $E(X)^2 = 0$
 - The square values are land lso E(X²) = 1

- In an exam you can enter the probability distribution into your GDC using the statistics mode
 - Enter the possible values as the data
 - Enter the probabilities as the frequencies
- You can then calculate the mean and variance just like you would with data

The score on a game is represented by the random variable S defined below.

S	0	1	2	10
P(S=s)	0.4	0.3	0.25	0.05

Calculate Var(S).

Calculate E(S)

Formula booklet Expected value of a discrete random variable X $E(X) = \sum x P(X = x)$

$$E(s) = \sum_{S} P(S=s) = 0 \times 0.4 + 1 \times 0.3 + 2 \times 0.25 + 10 \times 0.05 = 1.3$$

Calculate $E(S^2)$ $E(S^2) = \sum_{s}^{2} P(S=s) = 0^2 \times 0.4 + 1^2 \times 0.3 + 2^2 \times 0.25 + 10^2 \times 0.05 = 0.05$

© 2024 Exam Papers Practice Calculate Var (S)

Formula booklet Variance $Var(X) = E(X - \mu)^2 = E(X^2) - [E(X)]^2$

 $V_{ar}(5) = E(5^2) - [E(5)]^2 = 6.3 - 1.3^2$

Var(5) = 4.61

Transformation of a Single Variable

How do I calculate the expected value and variance of a transformation of X?

- Suppose X is **transformed** by the function f to form a new variable T = f(X)
 - This means the function f is applied to all possible values of X
- Create a new probability distribution table
 - The top row contains the values $t_i = f(x_i)$
 - The bottom row still contains the values $P(X = x_i)$ which are unchanged as:

•
$$P(X = x_i) = P(f(X) = f(x_i)) = P(T = t_i)$$

- Some values of Tmay be equal so you can add their probabilities together
- The **mean** is calculated in the same way

•
$$E(T) = \sum tP(X = x)$$

■ The variance is calculated using the same formula

•
$$Var(T) = E(T^2) - [E(T)]^2$$

Are there any short cuts?

- There are formulae which can be used if the transformation is **linear**
 - T = aX + b where a and b are constants
- If the transformation is **not linear** then there are **no shortcuts**
 - You will have to first find the probability distribution of T

What are the formulae for E(aX + b) and Var(aX + b)?

If a and b are constants then the following formulae are true:

$$E(aX + b) = aE(X) + b$$

Copyright $Var(aX + b) = a^2 Var(X)$

- This is the same as linear transformations of data
 - The mean is affected by multiplication and addition/subtraction
 - The variance is affected by multiplication but not addition/subtraction
- Remember division can be written as a multiplication

$$X = \frac{1}{a}X$$

X is a random variable such that E(X) = 5 and Var(X) = 4.

Find the value of:

- (i) E(3X+5)
- (ii) Var(3X+5)
- (iii) Var(2-X).

Formula booklet Linear transformation of a single random variable
$$|E(aX+b)=aE(X)+b|$$
 $|Var(aX+b)=a^2Var(X)|$
 $|E(3X+5)=3E(X)+5=3(5)+5|$
 $|Var(3X+5)=3^2Var(X)=9(4)|$
 $|Var(3X+5)=36|$
 $|Var(2-X)=(-1)^2Var(X)=1(4)|$
 $|Var(2-X)=4|$

Exam Papers Practice

Copyright

© 2024 Exam Papers Practice