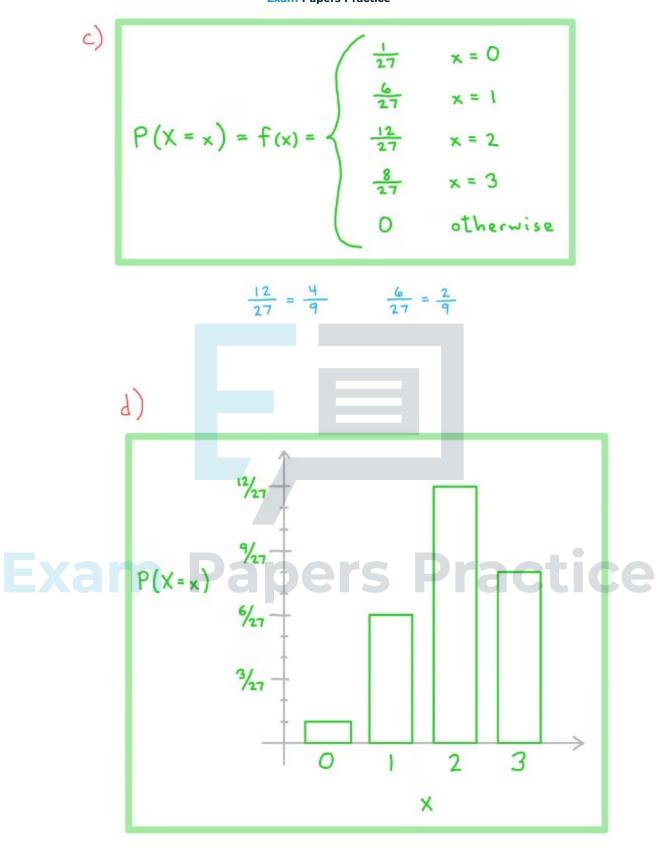


4.4 Probability Distributions Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Maths Al SL Students of other boards may also find this useful

There are 8 possible outcomes:


b)
$$\{H, H, H\}$$
 $\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \frac{8}{27} = P(X=3)$

$$\{H, H, T\}$$
 $\frac{2}{3} \times \frac{2}{3} \times \frac{1}{3} = \frac{4}{27}$

Exath, Patotice

$$\frac{4}{27} + \frac{4}{27} + \frac{4}{27} = \frac{12}{27} = P(X = 2)$$

$$\{T, T, T\} = \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} = \frac{1}{27} = P(X=0)$$

Question 2 Sum of all probabilities must equal one:

$$\frac{1}{3k} + \frac{2}{3k} + \frac{3}{3k} + \frac{4}{3k} + \frac{5}{3k} = 1$$

$$\frac{1+2+3+4+5}{3k} = 1$$

$$\frac{15}{3k} = 1$$

$$3k = 15$$

$$k = \frac{15}{3}$$

$$k = 5$$

Question 3

a) Sum of all probabilities must equal one:

Exam Papers Practice

b)
$$P(X>3) = P(X=5 \text{ or } 7) = P(X=5) + P(X=7)$$

$$P(\chi > 3) = \frac{5}{16} + \frac{7}{16} = \frac{12}{16}$$

$$P(x>3)=\frac{3}{4}$$

c) There is a finite number of possible values that X can take, so X is a discrete random variable.

Question 4

a) Sum of all probabilities must equal one:

$$2k + 0.72 = 1$$
 $2k = 0.28$
 $k = 0.14$

Exam

Pa	PR	6	P	2	G 1	145
P(X=x)	0.23	0.14	0.13	0.14	0.13	0.23

×	- 1	0	(2	3	4
P(X=x)	0.23	0.14	0.13	0.14	0.13	0.23

c)
$$P(0 \le X < 3) = P(X = 0 \text{ or } 1 \text{ or } 2)$$

= $P(X = 0) + P(X = 1) + P(X = 2)$

$$P(0 \le X < 3) = 0.14 + 0.13 + 0.14 = 0.41$$

(i)
$$P(X < Y) = P(X \neq Y) = 1 - P(X = Y)^*$$

$$P(X < Y) = 1 - \frac{1}{8} = \frac{7}{8}$$

* This is easier than adding up the probabilities for 0, 1, 2, and 3!

$$P(X > 1) = \frac{1}{4} + \frac{1}{12} + \frac{1}{8} = \frac{11}{24}$$

$$P(2 < X \le 4) = \frac{1}{12} + \frac{1}{8} = \frac{5}{24}$$

$$P(0 < \chi < 4) = \frac{1}{3} + \frac{1}{4} + \frac{1}{12} = \frac{8}{12} = \frac{2}{3}$$

Exam Papers Practice

Question 6

a) Sum of all probabilities must equal one:

$$\frac{6}{20}$$
 + p + $\frac{3}{20}$ + $\frac{5}{20}$ + $\frac{3}{20}$ + $\frac{1}{20}$ = 1

$$p + \frac{18}{20} = 1$$

$$p = \frac{2}{20} = \frac{1}{10}$$

$$\{0,5\}$$
 $\frac{6}{20} \times \frac{1}{20} = \frac{6}{400}$

$$\{5,0\}$$
 $\frac{1}{20} \times \frac{6}{20} = \frac{6}{400}$

$$\{2,3\}$$
 $\frac{5}{20} \times \frac{3}{20} = \frac{15}{400}$

$$\{3, 2\}$$
 $\frac{3}{20} \times \frac{5}{20} = \frac{15}{400}$

$$\frac{6}{400} + \frac{6}{400} + \frac{15}{400} + \frac{15}{400} = \frac{42}{400} = \frac{21}{200}$$

Score x	0	1	2	3	5
$P(X \le x)$	6	- 11	16	19	1
$\Gamma(\Lambda \leq \lambda)$	20	20	20	20	1

Exame + (20) 20 Practice

Note: Both 'I' sectors on the spinner are included in the event X=1.

$$\frac{11}{20} + \frac{5}{20} = \frac{16}{20}$$

$$\frac{16}{20} + \frac{3}{20} = \frac{19}{20}$$

$$1 - \frac{16}{20} = \frac{4}{20} = \frac{1}{5} = 0.2$$

a) The sum of all probabilities must equal one, so:

$$0.11+k^{2}+0.1+2k+0.1=1$$

$$k^{2}+2k+0.31=1$$

$$k^{2} + 2k + 0.31 = 1$$

Pataers Practice

$$k^2 + 2k - 0.69 = 0$$

b) Solve the quadratic:

$$k^{2} + 2k - 0.69 = 0$$

 $(k - 0.3)(k + 2.3) = 0$
 $k = 0.3 \text{ or } -2.3$ You can also use your GDC to solve this
But k is positive, so
 $k = 0.3$
c) $k^{2} = 0.3^{2} = 0.09$ $2k = 2(0.3) = 0.6$
 $E(X) = \sum_{x} P(X=x)$ Expected value of a discrete random variable X

$$E(X) = 0.48$$

If X is a person's score, then:

$$P(X=-5) = 0.55 \quad P(X=2) = 0.15 \quad P(X=3) = 0.15$$

$$P(X=10) = 0.1 \quad P(X=k) = 0.05$$
And $E(X) = 0$, so:

$$E(X) = \sum_{i=1}^{n} x P(X=x)$$
Expected value of a discrete random variable X

$$(-5)(0.55) + (2)(0.15) + (3)(0.15) + (10)(0.1) + k(0.05) = 0$$

$$-2.75 + 0.3 + 0.45 + 1 + 0.05k = 0$$

$$0.05k - 1 = 0$$

$$0.05k = 1$$

$$k = \frac{1}{0.05}$$
Xam Pa Series Practice

The sum of all probabilities must equal one, so:

$$0.1 + 0.05 + a + b + 0.1 = 1$$
 $a + b + 0.25 = 1$
 $a + b = 1 - 0.25$
 $a + b = 0.75$

And $E(X) = 2.3$, so:

 $(0)(0.1) + (1)(0.05) + (2)(a) + (3)(b) + (4)(0.1) = 2.3$
 $0 + 0.05 + 2a + 3b + 0.4 = 2.3$
 $2a + 3b = 2.3 - 0.45$
 $2a + 3b = 1.85$

b) Solve the simultaneous equations

$$\frac{(2-2\times0)}{-(2\alpha+3b=1.85)}$$

$$\frac{-(2\alpha+2b=1.5)}{b=0.35}$$

Substitute into 1 :

$$a = 0.35 = 0.75$$
 $a = 0.75 - 0.35 = 0.4$
 $a = 0.4$
 $b = 0.35$

You can also use your GDC to solve this

Example abelies Practice

$$P(1 \le X < 4) = 0.05 + a + b$$

= 0.05 + 0.4 + 0.35

$$P(1 \le X < 4) = 0.8$$