

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

4.4 Probability Distributions

IB Maths - Revision Notes

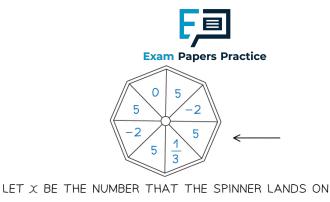
AA SL

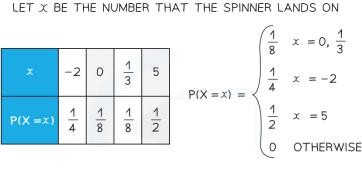
4.4.1 Discrete Probability Distributions

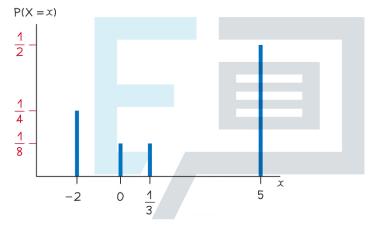
Discrete Probability Distributions

What is a discrete random variable?

- A random variable is a variable whose value depends on the outcome of a random event
 - The value of the random variable is not known until the event is carried out (this is what is meant by 'random' in this case)
- Random variables are denoted using upper case letters (X, Y, etc)
- Particular outcomes of the event are denoted using lower case letters (X, Y, etc)
- P(X=x) means "the probability of the random variable X taking the value X"
- A **discrete** random variable (often abbreviated to DRV) can only take **certain values** within a set
 - Discrete random variables **usually count** something
 - Discrete random variables usually can only take a finite number of values but it is possible that it can take an infinite number of values (see the examples below)
- **Examples** of discrete random variables include:
 - The number of times a coin lands on heads when flipped 20 times
 - this has a finite number of outcomes: {0,1,2,...,20}
 - The number of emails a manager receives within an hour
 - this has an infinite number of outcomes: {1,2,3,...}
 - The number of times a dice is rolled until it lands on a 6
 - this has an infinite number of outcomes: {1,2,3,...}
 - The number that a dice lands on when rolled once
 - this has a finite number of outcomes: {1,2,3,4,5,6}


What is a probability distribution of a discrete random variable?


- A discrete probability distribution fully describes all the values that a discrete random variable can take along with their associated probabilities
 - This can be given in a table
 - Or it can be given as a **function** (called a discrete probability distribution function or "pdf")
 - They can be represented by **vertical line graphs** (the possible values for along the horizontal axis and the probability on the vertical axis)


actic

- The sum of the probabilities of all the values of a discrete random variable is 1
 - This is usually written $\sum P(X=x) = 1$
- A **discrete uniform distribution** is one where the random variable takes a finite number of values each with an **equal probability**
 - If there are n values then the probability of each one is

Page 1 of 6 For more help visit our website www.exampaperspractice.co.uk

How do I calculate probabilities using a discrete probability distribution?

First draw a table to represent the probability distribution

Copyright If it is given as a function then find each probability

© 2024 Elfany probabilities are unknown then use algebra to represent them

- Forman equation using $\sum P(X = x) = 1$
 - Add together all the probabilities and make the sum equal to 1
- To find P(X=k)
 - If k is a possible value of the random variable X then P(X=k) will be given in the table
 - If k is not a possible value then P(X=k)=0
- To find $P(X \le k)$
 - Identify all possible values, X_i , that X can take which satisfy $X_i \le k$
 - Add together all their corresponding probabilities
 - $P(X \le k) = \sum_{x_i \le k} P(X = x_i)$
 - Some mathematicians use the notation F(x) to represent the cumulative distribution

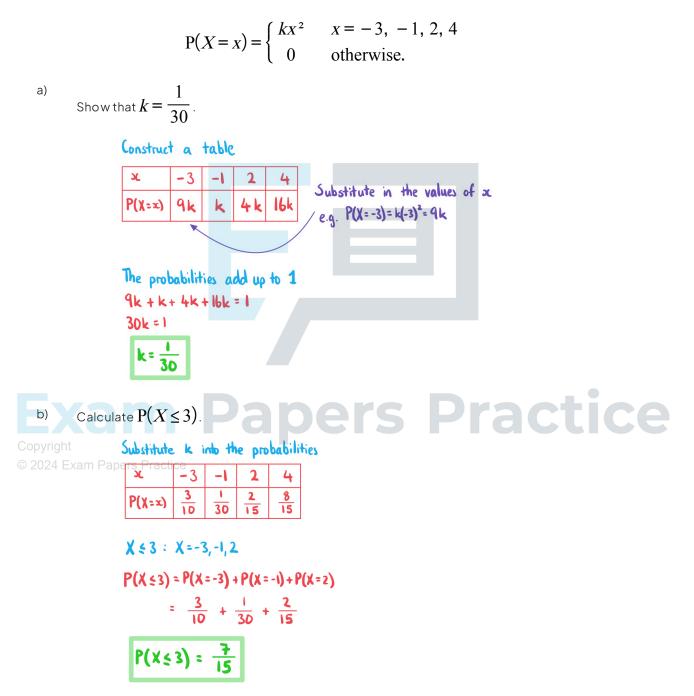
•
$$F(x) = P(X \le x)$$

• Using a similar method you can find P(X < k), P(X > k) and $P(X \ge k)$

- As all the probabilities add up to 1 you can form the following equivalent equations:
 - P(X < k) + P(X = k) + P(X > k) = 1
 - $P(X > k) = 1 P(X \le k)$
 - $P(X \ge k) = 1 P(X \le k)$

How do I know which inequality to use?

- P(X≤k) would be used for phrases such as:
 At most, no greater than, etc
- P(X < k) would be used for phrases such as:
 Fewer than
- $P(X \ge k)$ would be used for phrases such as:
 - At least , no fewer than , etc
- P(X > k) would be used for phrases such as:
 - Greater than, etc


Exam Papers Practice

© 2024 Exam Papers Practice

Worked example

The probability distribution of the discrete random variable X is given by the function

4.4.2 Expected Values

Expected Values E(X)

What does E(X) mean and how do I calculate E(X)?

- E(X) means the expected value or the mean of a random variable X
 - The expected value does not need to be an obtainable value of X
 - For example: the expected value number of times a coin will land on tails when flipped 5 times is 2.5
- For a **discrete** random variable, it is calculated by:
 - Multiplying each value of X with its corresponding probability
 - Adding all these terms together

$$E(X) = \sum x P(X = x)$$

- This is given in the formula booklet
- Look out for symmetrical distributions (where the values of X are symmetrical and their probabilities are symmetrical) as the mean of these is the same as the median
 - For example: if X can take the values 1,5,9 with probabilities 0.3, 0.4, 0.3 respectively then by symmetry the mean would be 5

How can I decide if a game is fair?

- Let X be the random variable that represents the gain/loss of a player in a game
 - X will be **negative** if there is a **loss**
- Normally the expected gain or loss is calculated by subtracting the cost to play the game from
 - the expected value of the prize
- Copy and E(X) is **positive** then it means the player can **expect to make a gain**
- \bigcirc 20.74 If E(λ) is **negative** then it means the player can **expect to make a loss**
 - The game is called fair if the expected gain is 0
 - E(X) = O

Worked example

Daphne pays \$15 to play a game where she wins a prize of \$1, \$5, \$10 or \$100. The random variable W represents the amount she wins and has the probability distribution shown in the following table:

		W	1	5	10	100		
		P(W=w)	0.35	0.5	0.05	0.1		
	a) Calculate the expected value of Daphne's prize.							
	Formula booklet Expected value of a discrete random variable X $E(X) = \sum x P(X = x)$							
	$E(W) = \sum w P(W = w)$							
	$= \times 0.35 + 5 \times 0.5 + 0 \times 0.05 + 00 \times 0.1$							
Expected value = \$ 13.35								
	b) Determine whether the game is fair.							
	A game is fair is expected gain/loss is O							
	Examination - Comparent Practice							
	yright 3 . 024 Exam Papers P	35 - 15 = -	1.65					
Expected loss is \$1.65 so game is not fair								