4.4 Classification of algorithms

Name:

Class:

Date:

Time:
130 minutes

Marks:
91 marks

Comments:

Q1.

Describe the Halting problem.
\qquad
\qquad
\qquad
\qquad
(Total 2 marks)

Q2.
Why is it not possible to create a Turing machine that solves the Halting problem?
\qquad
\qquad
(Total 1 mark)

Q3.
Employees at a bank use client computers to access data that is stored on a database server.

The database server uses software to query and modify data stored in a database on hard disk drives. It returns the results of these queries to the clients over the bank's computer network.

The performance of the system is unsatisfactory: the time-delay between a client sending a query to the server and the client receiving the results is unacceptably long.

> Explain how the performance of the system might be improved. You should consider the following factors that might be affecting the performance.

- the hardware of the server
- the design of the computer network
- the database and software running on the server.

In your answer you will be assessed on your ability to follow a line of reasoning to produce a coherent, relevant and structured response.
(Total 12 marks)

Q4.
The table below lists some well-known algorithms.

Algorithm
Linear search
Merge sort

Binary search
Post-order tree-traversal

(a) Which of the algorithms listed in the table has $0(n \log n)$ time complexity?
\qquad
\qquad
(b) How many of the algorithms listed in the table are algorithms used to solve tractable problems?
\qquad
\qquad
(Total 2 marks)

Q5.

(a) State the time complexity for the bubble sort algorithm in terms of n, where n is the

(b) Explain why the bubble sort algorithm has the time complexity stated in your answer to part (a).
\qquad
\qquad
\qquad
(Total 3 marks)

Q6.
An algorithm is a sequence of unambiguous instructions for solving a problem.
Three different algorithms, A, B and C, have the following orders of time complexity:
Algorithm A: $\mathrm{O}\left(2^{n}\right)$
Algorithm B: $\mathrm{O}(\mathrm{n})$
Algorithm C: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
List the algorithms A, B and C in order with the most efficient at the top of the list.
\qquad

Least efficient: \qquad
(Total 1 mark)

Q7.

Some problems are tractable.
What does it mean for a problem to be described as tractable?
\qquad
\qquad
(Total 2 marks)

Q8.
One of the problems listed in the table below is tractable.
Place one tick next to the tractable problem.

(Total 1 mark)
©9,XAM PAPERS PRACTICE
The code below shows an incomplete algorithm for a binary search.

```
PROCEDURE BSearch(List, F, L,
ItemToFind)
    Found \leftarrow False
    Failed \leftarrow (1)
    WHILE NOT Failed AND NOT Found
    M}\leftarrow(F+L) DIV 2,
    IF List[M] = ItemToFind
            THEN Found \leftarrow True
            ELSE
                IF F >= L
                (2)
                ELSE
                    IF List[M] > ItemToFind
                    THEN (3)
                        ELSE F}\leftarrowM+
                ENDIF
```

IF Found = True
THEN OUTPUT "Item is in list"
ELSE OUTPUT "Item is not in list"
ENDIF
ENDPROCEDURE

The DIV operator calculates the whole number result of integer division. For example, 15 DIV $4=3,17$ DIV $4=4$.
(a) What code should be added at position (1)?
\qquad
\qquad
(b) What code should be added at position (2)?
\qquad

EThe table below contains a list of orders oftime complexity (in no particular order). E

Order of time complexity
$\mathrm{O}(1)$
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
$\mathrm{O}(\log \mathrm{n})$
$\mathrm{O}\left(\mathrm{k}^{\mathrm{n}}\right)$
$\mathrm{O}(\mathrm{n})$

Which of the orders of time complexity given in the table :
(d) could be the time complexity of an intractable problem?
\qquad
(e) is the time complexity for a binary search?
\qquad
\qquad
(f) is the time complexity for getting the first item in a list?
\qquad
\qquad
(g) is the time complexity for a linear-search algorithm?
\qquad
\qquad
(h) Explain why a linear-search has the order of time complexity given in your answer

Q10.
The internal buses in a computer use parallel communication while most peripherals communicate with a computer using serial communication.
(a) Explain the differences between the ways in which parallel and serial communications carried out.
\qquad
\qquad
\qquad
\qquad
(b) Most peripherals, such as printers and keyboards, communicate with a computer using a serial connection.

Apart from the widespread availability of USB (Universal Serial Bus) ports, explain why peripherals usually use a serial communication method such as USB instead of parallel communication.
\qquad
\qquad
(c) In communications systems, a distinction is made between the bit rate and the baud rate.

Define the term baud rate.
\qquad
\qquad
(d) Explain how it is possible for the bit rate to be higher than the baud rate.

Q11.

\qquad

Problems can be classified into different categories based upon how efficiently they can be solved, or if they can be solved at all.

Three such classifications are:
(a) Explain what it means for a problem to be described as tractable.
\qquad
\qquad
\qquad
(b) What approach(es) might a programmer take if asked to 'solve' an intractable problem?
\qquad
\qquad
\qquad
\qquad
(c) Tick one row in Table 1 to indicate which of the problems listed in the table is unsolvable.

Table 1

Problem	Unsolvable? $(\checkmark$ one row $)$
The problem of sorting a list into order	
The Halting problem	
The travelling salesman problem	

(d) Sometimes more than one algorithm exists to solve the same problem.

In such cases, a programmer may select the algorithm to use based upon the time and space complexity of the algorithm.

Table 2 below shows the order of time complexity of three different algorithms to solve a problem.

Tick one row in Table 2 to indicate which of the algorithms is the least time efficient.

Q12.
A computer program stores a list of integers in an array named List. The numbers in the array are to be sorted into ascending order so that a particular efficient search algorithm can be used to search for a number.
(a) One of the search algorithms in Table 1 can only be used successfully on a sorted list.

Place one tick next to the name of the algorithm that requires a list to be sorted.
Table 1

Algorithm Name	Requires Sorted List? (Tick one box)
Binary search	
Linear search	

(b) The pseudo-code for a standard algorithm that can be used to sort the data in the array List into order is shown in Figure 1. The variable ListLength stores a count of the number of items in the array List.

Array indexing starts at 1.
Figure 1

Complete the empty (unshaded) cells in the trace table (Table 2) for an execution of the algorithm in Figure 1 when the array List contains the values $9,8,5$ and 6 in

				List			
List	Outer	Current	Inner	[1]	[2]	[3]	[4]
Length				9	8	5	6
4	2		1				
			0				
	3		2				
			1				
			0				
	4		3				

			2				
			1				

(c) In the trace table (Table 2), when the variable OuterPointer contains the value 2 and then 3 , the value of the variable InnerPointer decreases to 0 . When OuterPointer contains 4, InnerPointer stops decreasing when it reaches the number 1.

Explain why InnerPointer does not decrease to 0 when OuterPointer contains 4.
\qquad
\qquad
\qquad
\qquad
(d) Tick one box in Table 3 to indicate the correct Order of Time Complexity of the standard algorithm in Figure 1.

(e) State the name of the standard algorithm that is represented by the pseudo-code in Figure 1.
\qquad
(f) Instead of storing a list of numbers in an array as in (b), the numbers could be stored in a binary search tree. This would also enable efficient searching.

The numbers $9,6,1,8,20$ and 10 are put into a binary search tree in that order. Figure 2 shows this binary search tree.

Figure 2

(i) A search of the binary tree is performed for the number 8.

List the numbers, in the order that they would be checked, for the search to determine that the number 8 is present in the tree.
\qquad
(ii) A search of the binary tree is performed for the number 11.

List the numbers, in the order that they would be checked, for the search to determine that the number 11 is not present in the tree.

(g) The numbers 4, 5 and 3 are to be added into the binary search tree, in that order.

Figure 3 below is an identical copy of Figure 2.
Complete Figure $\mathbf{3}$ below to show the binary search tree from Figure $\mathbf{2}$ after the extra numbers have been added into it.

Q13.
An algorithm is a sequence of unambiguous instructions for solving a problem.
(a) Three different algorithms, A, B and C, have the following orders of time complexity:

Algorithm A: O($\left.\mathrm{a}^{\mathrm{n}}\right)$

Algorithm B: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
Algorithm C: O(n)
List the algorithms A, B and C in order with the most efficient at the top of the list.

Most efficient: \qquad
\qquad
Least efficient:
(b) Some problems are intractable.
(i) What does it mean for a problem to be described as intractable?
\qquad
\qquad
\qquad
(ii) One of the problems listed in the table below is intractable.

Place one tick next to the intractable problem.

Problem		Intractable? (Tick one)
The travelling salesman problem		
The problem of sorting a list of names into alphabetic order		
The Halting problem		

Q14.
(a) Time complexity is one of the two measures that are used to describe the complexity of an algorithm.

What is the other measure?
\qquad
(b) A student has been asked to write a program to list duplicate entries in a file containing a list of words. The diagram below shows her first attempt at planning an algorithm. The algorithm will not work in all circumstances.

```
Open file
N}\leftarrow Number of items in fil
For Pos1 \leftarrow 1 To N Do
```

```
Read item at position Posl in file into variable W1
For Pos2 \leftarrow 1 To N Do
    Read item at position Pos2 in file into variable W2
    If W1 = W2 And Not (Pos1 = Pos2)
        Then Output 'Duplicate: ' , W1
    EndIf
    EndFor
EndFor
Close file
```

The basic operation in the algorithm is the If statement that compares two words. The contents of a particular file are shown in the table below.

File position	Item
1	Rope
2	Dagger
3	Rope

(i) Complete the table below by tracing the execution of the algorithm in the diagram above when it is applied to the file in the table above.

(ii) Tick one box in the table below to indicate the correct order of time complexity of the algorithm that the student has written.

Order of time complexity	Tick one box
$\mathbf{O (a ^ { n })}$	
$\mathbf{O (n)}$	
$O\left(n^{2}\right)$	

(iii) Justify your answer to part (ii).
\qquad
\qquad
\qquad

Q15.
(a) Complete the missing parts of the question posed by the Halting problem in the diagram below.

\qquad
\qquad

Q16.
The binary search method can be used to search for an item in an ordered list.
(a) Show how the binary search method works by writing numbers in the table below to indicate which values would be examined to determine if the name "Richard" appears in the list.

Write the number " 1 " by the first value to be examined, " 2 " by the second value to be examined and so on.

Position	Value	Order Examined In

1	Adam	
2	Alex	
3	Anna	
4	Hon	
5	Mohammed	
6	Moonis	
7	Niraj	
8	Philip	
9	Punit	
10	Ravi	
11	Richard	
12	Timothy	
13	Tushara	
14	Uzair	
15	Zara	

(b) A different list contains 137 names.
$=M$
What is the maximum number of names that would need to be accessed to
determine if the name "Rachel" appears in the list? Write your answer in the box below.

(c) Tick one box to indicate the order of time complexity of the binary search method.

Order of time complexity	Tick one box
$\mathrm{O}\left(\log _{2} \mathrm{n}\right)$	
$\mathrm{O}(\mathrm{n})$	
$\mathrm{O}\left(\mathrm{n}^{2}\right)$	

Q17.
The graph below illustrates the time complexity of three different algorithms, A, B and C.

(a) The three algorithms have orders of time complexity $\mathrm{O}\left(\mathrm{n}^{2}\right), \mathrm{O}(\mathrm{n})$ and $\mathrm{O}\left(\mathrm{a}^{\mathrm{n}}\right.$)
(i) What is the order of time complexity of algorithm C ? \qquad
(ii) Which of the algorithms, A, B or C , is the most time efficient? \qquad
(b) The Travelling Salesman problem is intractable.
(i) What is meant by an intractable problem?

\qquad
\qquad
(ii) What approach might a programmer take if asked to 'solve' an intractable problem?
\qquad
\qquad
\qquad

Q18.
A recursively-defined procedure ProcA that takes two integers as parameters is defined below.
(a) What is meant by a recursively-defined procedure?
\qquad
\qquad
(b) What is the role of the stack when a recursively-defined procedure is executed?
\qquad
\qquad
(c) Dry run the procedure call $\operatorname{ProcA}(11,1)$ using the data in the array, Items, by completing the trace table below.

(d) What is the purpose of this algorithm?
\qquad
(e) Give a situation where this algorithm will fail.
\qquad
\qquad
(f) Suggest a modification to the algorithm that will prevent it from failing.
\qquad
\qquad
(g) With an ordered array, Items, of many more entries, what more efficient algorithm could be used to achieve your expressed purpose in part (d)?
\qquad
\qquad
(Total 10 marks)

EXAM PAPERS PRACTICE

