铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

4.3 Probability

AA SL

Exam Papers Practice

4.3.1 Probability \& Types of Events

Probability Basics

What key words and terminology are used with probability?

- An experiment is a repeatable activity that has a result that can be observed or recorded
- Trials are what we call the repeats of the experiment
- An outcome is a possible result of a trial
- Anevent is anoutcome oracollection of outcomes
- Events are usually denoted with capital letters: A, B, etc
- $n(A)$ is the number of outcomes that are included in event A
- An event can have one ormore than one outcome
- A sample space is the set of all possible outcomes of an experiment
- This is denoted by U
- $n(U)$ is the total number of outcomes
- It can be represented as a list or a table

How do Icalculate basic probabilities?

- If all outcomes are equally likely then probabilityfor each outcome is the same
- Probability foreach outcome is $\frac{1}{n(U)}$
- Theoretical probability of an event can be calculated without using an experiment by dividing the number of outcomes of that event by the to tal number of outcomes

$$
P(A)=\frac{n(A)}{n(U)}
$$

- This is given in the formula booklet
- Identifying all possible outcomes either as a list or a table can help
- Experimental probability (also known as relative frequency) of an outcome can be calculated using results from an experiment by dividing its frequency by the number of trials

Frequency of that outcome from the trials

- Relative frequency of an outcome is

Total number of trials (n)

How do lcalculate the expected number of occurrences of an outcome?

- Theoretical probability can be used to calculate the expected number of occurrences of an outcome from n trials
- If the pro bability of an outcome is p and there are n trials then:
- The expected number of occurrences is $n p$
- This does not mean that there will exactly npoccurrences
- If the experiment is repeated multiple times then we expect the number of occurrences to average out to be $n p$

What is the complement of an event?

- The probabilities of all the outcomes add up to 1
- Complementary events are when there are two events and exactly one of them will occur
- One event has to occur but both events can not occur at the same time
- The complement of event \boldsymbol{A} is the event where event \boldsymbol{A} does not happen
- This can be thought of as not \boldsymbol{A}
- This is denoted A^{\prime}

$$
\mathrm{P}(A)+\mathrm{P}\left(A^{\prime}\right)=1
$$

- This is in the formula booklet
- It is commonly written as $\mathrm{P}\left(A^{\prime}\right)=1-\mathrm{P}(A)$

What are different types of combined events?

- The intersection of two events (A and B) is the event where both A and $B \circ c c u r$
- This can be thought of as A and B
- This is denoted as $A \cap B$
- The union of two events (A and B) is the event where A or Borboth occur
- This can be thought of as \boldsymbol{A} or \boldsymbol{B}
- This is denoted $A \cup B$
- The event where A occurs given that event B has occurred is called conditional probability
- This can be thought as \boldsymbol{A} given \boldsymbol{B}
- This is denoted $A \mid B$

How do I find the probability of combined events?

- The probability of A or B (or both) occurring can be found using the formula

Copyright $\quad \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$

- This is given in the formula booklet
- You subtract the probability of A and B both occurring because it has been included twice (once in $P(A)$ and once in $P(B)$)
- The probability of A and B occurring can be found using the formula

$$
\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B \mid A)
$$

- A rearranged version is given in the formula booklet
- Basically you multiply the pro bability of A by the probability of B then happening

(9) Exam Tip

- In an exam drawing a Venn diagram ortree diagram can help even if the question does not ask youto

Worked example

Dave has two fair spinners, A and B. Spinner A has three sides numbered 1,4,9 and spinner B has four sides numbered $2,3,5,7$. Dave spins both spinners and forms a two -digit number by using the spinner A for the first digit and spinner B for the second digit.
T is the event that the two -digit number is a multiple of 3 .
a) List all the possible two-digit numbers.

A two-way table would be a systematic way to list all the outcomes

	2	3	5	7
1	12	13	15	17
4	42	43	45	47
9	92	93	95	97

b) Find $\mathrm{P}(T)$.
$P(T)=n(T)$ Number of multiples of 3

$$
P(T)=\frac{5}{12}
$$

c) Find $\mathrm{P}\left(T^{\prime}\right)$.

$$
\begin{aligned}
& P(T)+P\left(T^{\prime}\right)=1 \Rightarrow P\left(T^{\prime}\right)=1-P(T) \\
& P\left(T^{\prime}\right)=1-\frac{5}{12} \\
& P\left(T^{\prime}\right)=\frac{7}{12}
\end{aligned}
$$

Independent \& Mutually Exclusive Events

What are mutually exclusive events?

- Two events are mutually exclusive if they cannot bothoccur
- For example: when rolling a dice the events "getting a prime number" and "getting a 6" are mutually exclusive
- If A and B are mutually exclusive events then:
- $\mathrm{P}(A \cap B)=0$

What are independent events?

- Two events are independent if one occurring does not affect the probability of the other occurring
- For example: when flipping a coin twice the events "getting a tails on the first flip" and "getting a tails on the second flip" are ind ependent
- If A and B are independent events then:
- $\mathrm{P}(A \mid B)=\mathrm{P}(A)$ and $\mathrm{P}(B \mid A)=\mathrm{P}(B)$
- If A and B are independ ent events then:
- $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$
- This is given in the formula booklet
- This is a useful formula to test whether two events are statistically independent

Howdo Ifind the probability of combined mutually exclusive events?

- If A and B are mutually exclusive events then

$$
\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)
$$

- This is given in the formula booklet
- This occurs because $\mathrm{P}(A \cap B)=0$
- For anytwo events A and B the events $A \cap B$ and $A \cap B^{\prime}$ are mutually exclusive and A is the union of these two events
- $\mathrm{P}(A)=\mathrm{P}(A \cap B)+\mathrm{P}\left(A \cap B^{\prime}\right)$
- This works for any two events A and B

Worked example

a) A student is chosen at random from a class. The probability that they have a dog is 0.8 , the probability they have a cat is 0.6 and the probability that they have a cat or a dog is 0.9 . Find the probability that the student has both a dog and a cat.

$$
\begin{aligned}
& \text { Let } D \text { be event "has a dog" and }(\text { be "has a cat" } \\
& P(D \cup C)=P(D)+P(C)-P(D \cap C) \\
& 0.9=0.8+0.6-P(D \cap C) \\
& P(D \cap C)=0.5
\end{aligned}
$$

b) Two events, Q and R, are such that $\mathrm{P}(Q)=0.8$ and $\mathrm{P}(Q \cap R)=0.1$. Given that Q and R are independent, find $\mathrm{P}(R)$.

$$
\begin{aligned}
& Q \text { and } R \text { independent } \Rightarrow P(Q \cap R)=P(Q) P(R) \\
& 0.1=0.8 \times P(R) \quad \therefore P(R)=\frac{0.1}{0.8} \\
& P(R)=0.125 \text { or } \frac{1}{8}
\end{aligned}
$$

c) Two events, S and T, are such that $\mathrm{P}(S)=2 \mathrm{P}(T)$.

Given that S and T are mutually exclusive and that $\mathrm{P}(S \cup T)=0.6$ find $\mathrm{P}(S)$ and $\mathrm{P}(T)$.
Sactice and T mutually exclusive $\Rightarrow P(S \cup T)=P(S)+P(T)$
$0.6=P(S)+P(T)$
$0.6=2 P(T)+P(T) \quad P(S)=2 P(T)$
$0.6=3 P(T)$
$P(T)=0.2$ and $P(S)=0.4$

4.3.2 Conditional Probability

Conditional Probability

What is conditional probability?

- Conditional probability is where the probability of an event happening can vary depending on the outcome of a prior event
- The event A happening given that event B has happened is denoted $A \mid B$
- A common example of conditional probabilityinvolves selecting multiple objects from a bag without replacement
- The probability of selecting a certain item changes depending on what was selected before
- This is because the total number of items will change as they are not replaced once they have been selected

Howdolcalculate conditional probabilities?

- Some conditio nal probabilities can be calculated byusing counting outcomes
- Probabilities without replacement can be calculated like this
- For example: There are 10 balls in a bag, 6 of them are red, two of them are selected without replacement
- To find the probability that the second ball selected is red given that the first one is red count how many balls are left:
- A red one has alreadybeenselected so there are 9 balls left and 5 are red so the probability is $\frac{5}{9}$
- You can use sample space diagrams to find the probability of A given B :
- reduce your sample space to just include outcomes for event B
- find the proportion that also contains outcomes forevent A
- There is a formula forconditional probability that you should use
- $\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$
- This is given in the formula booklet
- This can be rearranged to give $\mathrm{P}(A \cap B)=\mathrm{P}(B) \mathrm{P}(A \mid B)$
- Bysymmetryyou can also write $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B \mid A)$

How doltellif two events areindependent using conditional probabilities?

- If A and B are two events then they are independent if:
- $\mathrm{P}(A \mid B)=\mathrm{P}(A)=\mathrm{P}\left(A \mid B^{\prime}\right)$

Exam Papers Practice

- Equallyyou can still use $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$ to test for independence
- This is given in the formula booklet

Worked example

Let R be the event that it is raining in Weatherville and T be the event that there is a thunderstorm in Weatherville.

It is known that $\mathrm{P}(T)=0.035, \mathrm{P}(T \cap R)=0.03$ and $\mathrm{P}(T \mid R)=0.15$.
a) Find the probability that it is raining in Weatherville.

b) State whether the events R and T are independent. Give a res on foryour answer.

$$
\text { If } R \text { and } T \text { are independent then } P(T \mid R)=P(T)
$$

$$
P(T \mid R)=0.15 \text { and } P(T)=0.035
$$

R and T are not independent as
$P(T \mid R) \neq P(T)$

4.3.3 Sample Space Diagrams

Venn Diagrams

What is a Venn diagram?

- A Venn diagram is a wayto illustrate events from an experiment and are particularly us eful when there is an overlap between possible outcomes
- A Venn diagram consists of
- a rectangle representing the sample space (U)
- The rectangle is labelled U
- Some mathematicians instead use Sor ξ
- a circle foreach event
- Circles may or maynot overlap depending on which outcomes are shared between events
- The numbers in the circles represent either the frequency of that event or the probability of that event
- If the frequencies are used then theyshould add up to the totalfrequency
- If the probabilities are used then theyshould add up to 1

What do the different regions mean on a Venn diagram?

- A^{\prime} is represented by the regio ns that are not in the A circle
- $A \cap B$ is represented by the region where the A and B circles o verlap
- $A \cup B$ is represented by the regions that are in A or B or both
- Venn diagrams show 'AND' and 'OR' statements easily
- Venn diagrams also instantly show mutually exclusive events as these circles will not overlap
- Independent events can not be instantly seen
- Youneed to use probabilities to deduce if two events are independent
Exam Papers Practice

$$
\begin{array}{|l|}
\hline \text { A } \cup B \text { (UNION) } \\
\text { "A OR B OR BOTH" } \\
\hline
\end{array}
$$

A \cap B (INTERSECTION)
"A AND B" "A AND B"

A' (COMPLEMENT) "NOT A"

THE BUBBLE FOR EVENT B LIES ENTIRELY IN THE BUBBLE FOR EVENT A IF EVENT B OCCURS, SO DOES EVENT A (BUT NOT NECESSARILY VICE VERSA)

THE BUBBLES FOR EVENTS A AND C DO NOT OVERLAP: THEY ARE MUTUALLY EXCLUSIVE

Copyright

© 2024 Exam Papers Practice

Howdo Isolve probability problems involving Venn diagrams?

- Draw, oradd to a given Venn diagram, filling in as manyvalues as possible from the information provided in the question
- It is usually helpful to work from the centre outwards
- Fill in intersections (overlaps) first
- If two events are independent you can use the formula
- $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$
- To find the conditional probability $\mathrm{P}(A \mid B)$
- Add to gether the frequencies/probabilities in the Bcircle
- This is your denominator
- Out of tho se frequencies/probabilities add to gether the ones that are also in the Acircle
- This is your numerator
- Evaluate the fraction

- ExamTip

- If you struggle to fill in a Venn diagram in an exam:
- Label the missing parts using algebra
- Form equations using known facts such as:
- the sum of the probabilities should be 1
- $P(A \cap B)=P(A) P(B)$ if A and B are ind ependent events

(. Worked example

40 people are asked if they have sugar and/or milk in their coffee. 21 people have sugar, 25 people have milk and 7 people have neither.
a) Draw a Venn diagram to represent the information.

Find the centre first

Total should be 40
$(21-x)+x+(25-x)+7=40$
$53-x=40 \quad \therefore x=13$

b) One of the 40 people are random mlyselected, find the probability that they have sugar but not milk with their coffee.
S and not M is the part of S circle that does not include M
Exam
Copyright
© 2024 Exam Papers Prat

$$
\begin{array}{ll}
P\left(S \cap M^{\prime}\right)=\frac{8}{40} & \text { Remember to write as a fraction } \\
P\left(S \cap M^{\prime}\right)=\frac{1}{5} & \text { of the total }
\end{array}
$$

c) Given that a person who has sugar is selected at random, find the probability that they have milk with their coffee.

Given that sugar has been selected we only want the S circle as our total.
Out of the 5 circle 13 also have milk

$$
P(M \mid S)=\frac{13}{21}
$$

Tree Diagrams

What is a tree diagram?

- Atree diagram is another wayto show the outcomes of combined events
- Theyare veryuseful forintersections of events
- The events on the branches must be mutually exclusive
- Usually they are an event and its complement
- The probabilities on the second sets of branches can depend on the outcome of the first event
- These are conditional probabilities
- When selecting the items from a bag:
- The second set of branches will be the same as the first if the items are replaced
- The second set of branches will be the different to the first if the items are not replaced

How are probabilities calculated using a tree diagram?

- To find the probability that two events happen to gether you multiply the corresponding probabilities on their branches
- It is helpful to find the probability of all combined outcomes once you have drawn the tree
- To find the probability of an event you can:
- add to gether the probabilities of the combined outcomes that are part of that event
- For example: $\mathrm{P}(A \cup B)=\mathrm{P}(A \cap B)+\mathrm{P}\left(A \cap B^{\prime}\right)+\mathrm{P}\left(A^{\prime} \cap B\right)$
- subtract the probabilities of the combined outcomes that are not part of that event from 1
- For example: $\mathrm{P}(A \cup B)=1-\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)$

$1{ }^{\text {st }}$ EXPERIMENT

Copyright

© 2024 Exam Papers Practice

$2^{\text {nd }}$ EXPERIMENT
$2^{\text {nd }}$ EXPERIMENT

$P\left(A^{\prime} \cap B\right)$
$P\left(A^{\prime} \cap B^{\prime}\right)$

Do I have to use a tree diagram?

- If there are multiple events ortrials then a tree diagram can get big
- You can break down the problem by using the words AND/OR/NOT to help you find probabilities without a tree
- You can speed up the process byonly drawing parts of the tree that you are interested in

Which events dolput on the first branch?

- If the events A and B are independent then the orderdoes not matter
- If the events A and B are not independent then the order does matter
- If you have the probability of \boldsymbol{A} given \boldsymbol{B} then put \boldsymbol{B} on the first set of branches
- If you have the probability of \boldsymbol{B} given \boldsymbol{A} then put \boldsymbol{A} on the first set of branches

© Exam Tip

- In an exam do not waste time drawing a full tree diagram forscenarios with lots of events unless the question asks you to
- Only draw the parts that you are interested in

Exam Papers Practice
© 2024 Exam Papers Practice

Worked example

20% of people in a companywear glasses. 40% of people in the company who wear glasses are right-handed. 50% of people in the company who don't wear glasses are right-handed.
a) Draw a tree diagram to represent the information.

Let G be the event "wears glasses" and R be "is right-handed"

b) One of the people in the company are randomly selected, find the probability that they are right-handed.

Find options that contain R
© 2024 Exam Papers Pr $P(R)=P(G \cap R)+P\left(G \cap R^{\prime}\right)=0.08+0.4$

$$
P(R)=0.48
$$

c) Given that a person who is right-handed is selected at random, find the probability that they wear glasses.

$$
\begin{aligned}
& P(G \mid R)=\frac{P(G \cap R)}{P(R)}=\frac{0.08}{0.48} \\
& P(G \mid R)=\frac{1}{6}
\end{aligned}
$$

