

4.2 Correlation & Regression

Contents

- * 4.2.1 Bivariate Data
- * 4.2.2 Correlation & Regression

4.2.1 Bivariate Data

Scatter Diagrams

What does bivariate data mean?

- **Bivariate data** is data which is collected on **two variables** and looks at how one of the factors affects the other
 - Each data value from one variable will be **paired** with a data value from the other variable
 - The two variables are often related, but do not have to be

What is a scatter diagram?

- A **scatter diagram** is a way of graphing bivariate data
 - One variable will be on the x-axis and the other will be on the y-axis
 - The variable that can be **controlled** in the data collection is known as the **independent** or **explanatory variable** and is plotted on the *x*-axis
 - The variable that is **measured** or discovered in the data collection is known as the **dependent** or **response variable** and is plotted on the y-axis
- Scatter diagrams can contain **outliers** that do not follow the trend of the data

Correlation

What is correlation?

- Correlation is how the two variables change in relation to each other
 - Correlation could be the result of a causal relationship but this is not always the case
- Linear correlation is when the changes are proportional to each other
- Perfect linear correlation means that the bivariate data will all lie on a straight line on a scatter diagram
- When describing correlation mention
 - The type of the correlation
 - Positive correlation is when an increase in one variable results in the other variable increasing
 - Negative correlation is when an increase in one variable results in the other variable decreasing
 - No linear correlation is when the data points don't appear to follow a trend
 - The strength of the correlation
 - Strong linear correlation is when the data points lie close to a straight line
 - Weak linear correlation is when the data points are not close to a straight line
- If there is **strong linear correlation** you can draw a line of best fit (by eye)
 - The line of best fit will pass through the mean point $(\overline{X}, \overline{y})$
 - If you are asked to draw a line of best fit
 - Plot the mean point
 - Draw a line going through it that follows the trend of the data

What is the difference between correlation and causation?

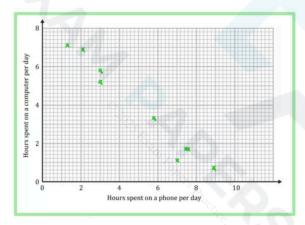
- It is important to be aware that just because correlation exists, it does not mean that the change in one of the variables is **causing** the change in the other variable
 - Correlation does not imply causation!
- If a change in one variable causes a change in the other then the two variables are said to have a causal relationship
 - Observing correlation between two variables does not always mean that there is a causal relationship
 - There could be **underlying factors** which is causing the correlation
 - Look at the two variables in question and consider the context of the question to decide if there could be a causal relationship
 - If the two variables are temperature and number of ice creams sold at a park then it is likely to be a causal relationship
 - Correlation may exist between global temperatures and the number of monkeys kept as pets in the UK but they are unlikely to have a causal relationship

Worked example

A teacher is interested in the relationship between the number of hours her students spend on a phone per day and the number of hours they spend on a computer. She takes a sample of nine students and records the results in the table below.

Hours spent on a phone per day	7.6	7.0	8.9	3.0	3.0	7.5	2.1	1.3	5.8
Hours spent on a computer per day	1.7	1.1	0.7	5.8	5.2	1.7	6.9	7.1	3.3

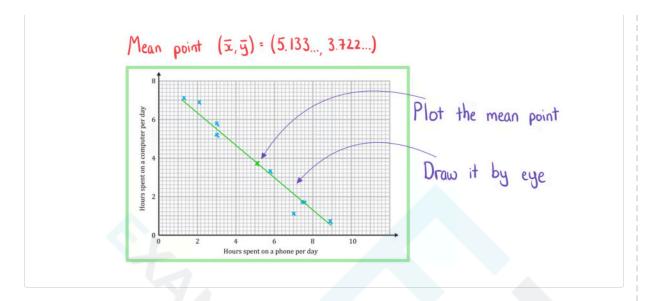
Draw a scatter diagram for the data. a)



Describe the correlation. b)

Strong negative linear correlation

Draw a line of best fit. c)



4.2.2 Correlation & Regression

Linear Regression

What is linear regression?

- If strong linear correlation exists on a scatter diagram then the data can be modelled by a linear model
 - Drawing lines of best fit by eye is not the best method as it can be difficult to judge the best position for the line
- The **least squares regression line** is the line of best fit that minimises the **sum of the squares** of the gap between the line and each data value
- It can be calculated by either looking at:
 - vertical distances between the line and the data values
 - This is the **regression line of y on x**
 - horizontal distances between the line and the data values
 - This is the **regression line of x on y**

How do I find the regression line of y on x?

- The **regression line of y on x** is written in the form y = ax + b
- a is the **gradient** of the line
 - It represents the change in y for each individual unit change in x
 - If a is **positive** this means y **increases** by a for a unit increase in x
 - If a is **negative** this means y **decreases** by |a| for a unit increase in x
- b is the y intercept
 - It shows the value of y when x is zero
- You are expected to use your GDC to find the equation of the regression line
 - Enter the bivariate data and choose the **model** "ax + b"
 - Remember the **mean point** $(\overline{X}, \overline{Y})$ will lie on the regression line

How do I find the regression line of x on y?

- The **regression line of x on y** is written in the form x = cy + d
- c is the **gradient** of the line
 - It represents the change in x for each individual unit change in y
 - If c is **positive** this means x **increases** by c for a unit increase in y
 - If c is **negative** this means x **decreases** by |c| for a unit increase in y
- d is the x intercept
 - It shows the value of x when y is zero
- You are expected to use your GDC to find the equation of the regression line
 - It is found the same way as the regression line of y on x but with the two data sets **switched around**
 - Remember the **mean point** $(\overline{X}, \overline{Y})$ will lie on the regression line

How do I use a regression line?

- The regression line can be used to decide what type of correlation there is if there is no scatter diagram
 - If the gradient is **positive** then the data set has **positive correlation**
 - If the gradient is **negative** then the data set has **negative correlation**
- The regression line can also be used to **predict** the value of a **dependent variable** from an **independent variable**
 - The equation for the y on x line should only be used to make predictions for y
 - Using a y on x line to predict x is not always reliable
 - The equation for the x on y line should only be used to make predictions for x
 - Using an x on y line to predict y is not always reliable
 - Making a prediction within the range of the given data is called **interpolation**
 - This is usually reliable
 - The stronger the correlation the more reliable the prediction
 - Making a prediction outside of the range of the given data is called **extrapolation**
 - This is much less reliable
 - The prediction will be more reliable if the number of data values in the original sample set is bigger
- The y on x and x on y regression lines intersect at the mean point $(\overline{X}, \overline{Y})$

Worked example

The table below shows the scores of eight students for a maths test and an English test.

Maths (X)	7	18	37	52	61	68	75	82
English (y)	5	3	9	12	17	41	49	97

Write down the value of Pearson's product-moment correlation coefficient, I.

Write down the equation of the regression line of y on x, giving your answer in the form y = ax + b where a and b are constants to be found.

a is the coefficient of
$$x$$
 a = 0.943579...
b is the constant term b = -18.05398...
y = 0.944 x - 18.1

Write down the equation of the regression line of X on Y, giving your answer in the form X = cy + d where c and d are constants to be found.

Swap the two sets of data c is the coefficient of y c = 0.668700... d is the constant term
$$d = 30.52410...$$
 $x = 0.669y + 30.5$

d) Use the appropriate regression line to predict the score on the maths test of a student who got a score of 63 on the English test.

$$y = 63$$
 so use x on y line
 $x = (0.668700...) \times 63 + (30.52410...) = 72.652...$
Maths score 72.7

PMCC

What is Pearson's product-moment correlation coefficient?

- Pearson's product-moment correlation coefficient (PMCC) is a way of giving a numerical value to a linear relationship of bivariate data
- ullet The PMCC of a sample is denoted by the letter T
 - r can take any value such that $-1 \le r \le 1$
 - A positive value of r describes positive correlation
 - A negative value of r describes negative correlation
 - r = 0 means there is **no linear correlation**
 - r = 1 means **perfect positive linear** correlation
 - r = -1 means **perfect negative linear** correlation
 - The closer to 1 or -1 the stronger the correlation

How do I calculate Pearson's product-moment correlation coefficient (PMCC)?

- You will be expected to use the statistics mode on your GDC to calculate the PMCC
- The formula can be useful to deepen your understanding

$$r = \frac{S_{xy}}{S_x S_y}$$

$$S_{xy} = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right) \left(\sum_{i=1}^{n} y_i \right)$$
 is linked to the **covariance**

$$S_{X} = \sqrt{\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \text{ and } S_{Y} = \sqrt{\sum_{i=1}^{n} y_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} y_{i}\right)^{2}} \text{ are linked to the } S_{X} = \sqrt{\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} y_{i}\right)^{2}}$$

You do not need to learn this as using your GDC will be expected

When does the PMCC suggest there is a linear relationship?

- Critical values of r indicate when the PMCC would suggest there is a linear relationship
 - In your exam you will be given critical values where appropriate
 - Critical values will depend on the size of the sample
- If the absolute value of the PMCC is bigger than the critical value then this suggests a linear model is appropriate