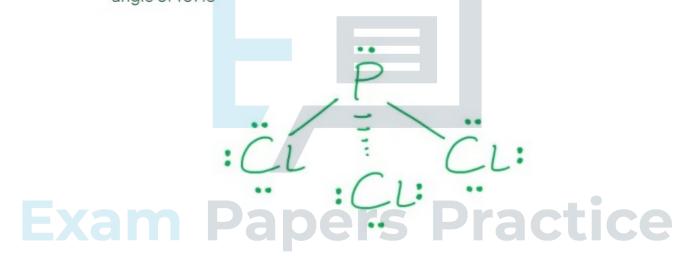


4.2 Resonance, Shapes & Giant Structures Mark Schemes


Exam Papers Practice

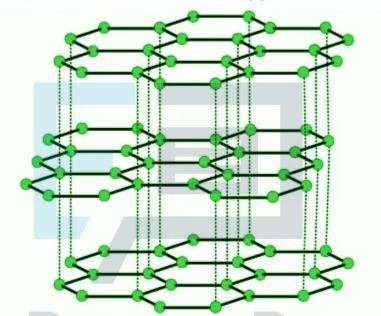
To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

The correct answer is C because:

- If the reaction has a higher yield at a higher temperature, then the reaction will be endothermic
- The VESPR theory states that electron pairs repel each other whether
 or not they are in bond pairs or lone pairs; therefore the electrons will
 spread as much as possible to reduce repulsion
 - This creates the shape of the molecules based on the atoms and lone pairs present
- PCl₃ has three atoms around the central atom with one lone pair on the phosphorus making it trigonal pyramidal in shape with a bond angle of 107.5°

	if the reaction was exothermic it would produce less yield at higher temperatures
D is incorrect as	the phosphorus atom has a lone pair of electrons and the shape is not planar

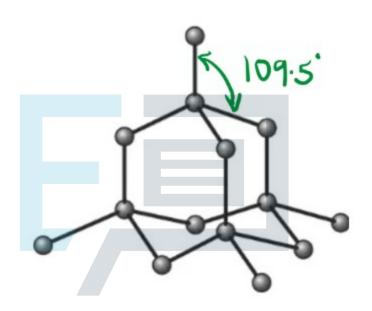
The correct answer is A because:


- The VESPR theory states that electron pairs repel each other whether
 or not they are in bond pairs or lone pairs; therefore the electrons will
 spread as much as possible to reduce repulsion
 - This creates the shape of the molecules based on the atoms and lone pairs present
- Trimethylamine has a lone pair of electrons on the nitrogen atom, giving it the structure of trigonal pyramidal (107.5°)
- Boron trifluoride has no lone pair of electrons forming a trigonal planar molecule with angles of 120°
- The molecule formed in this reaction will have a dative covalent bond between the two structures, as boron is described as being electron-deficient
- The Lewis diagrams look like this

	they do not show the correct structure of boron trifluoride, it is drawn as if a lone pair of electrons are present
D is incorrect as	this structure is not taking into account the repulsion from the dative bonding pair between the nitrogen and the boron

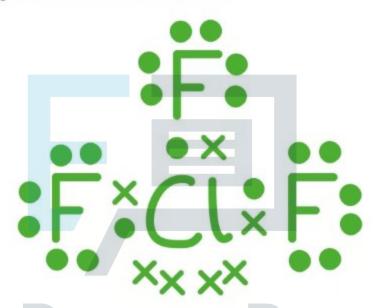
The correct answer is A because:

- Graphite is a layered structure with three covalent bonds around each carbon atom in the same plane
- The three bonds, or electron domains, mean that the C-C-C bond angle is 120° (not 109.5° as statement III suggests)


- Between the layers are weak London dispersion forces that arise from the movement of delocalised electrons within the layers
- The delocalised electrons are responsible for the conductivity of graphite

The correct answer is **B** because:

- Diamond and silicon both have four covalent bonds around each atom in a tetrahedral arrangement
- · They form a giant network or macromolecular structure
- The bond angle in each structure is 109.5°


Exam Papers Practice

A is incorrect as	silicon has a macromolecular structure
C is incorrect as	silicon is below carbon in group 14, so silicon atoms are larger than carbon atoms and the bond length in Si-Si will be longer than C-C
D is incorrect as	all the valence electrons are in covalent bonds so neither structure has delocalised electrons

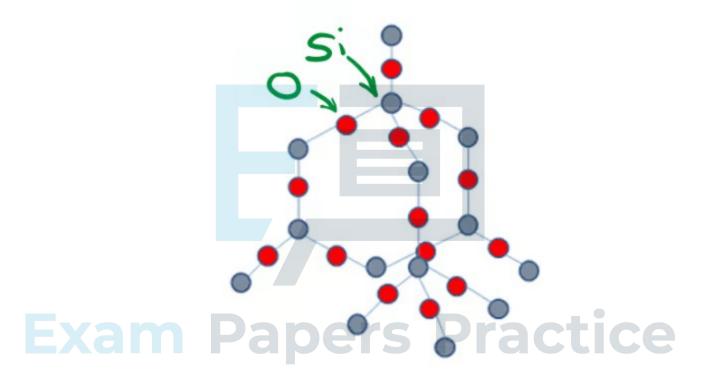
The correct answer is **B** because:

- The CIF3 molecule has the following number of valence electrons
 - o Chlorine = 7
 - o Fluorine = $7 \times 3 = 21$
 - Number of electrons = 28
- The arrangement of electrons would be:

- The remaining electrons surround the chlorine atom
- As you can see there are 5 electron pairs, 3 are bonding pairs and 2 are lone pairs

A, C & D are	1, 3 and 0 are not the correct number of
incorrect as	lone pairs in the <i>CI</i> F ₃ molecule

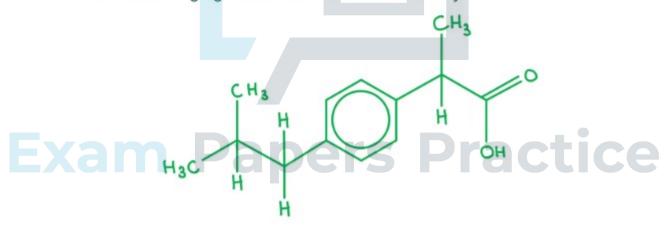
The correct answer is C because:


- The BCl₃ has the following number of valence electrons
 - o B=3
 - o $CI = 7 \times 3 = 21$
 - o 24 electrons overall
- There are 24 electrons overall which means 12 pairs of electrons
 - o 9 pairs surrounding the 3 chlorine atoms
 - 3 bonding pairs (B-Cl bonds)
 - No lone pairs
- Therefore BCl₃ is trigonal planar with a bond angle of 120°

A is	H ₃ O ⁺ has a trigonal pyramidal shape with a bond angle of 107 ⁰
incorrectas	bond angle of 107°
Bis	TIBr ₃ ²⁻ has a trigonal pyramidal shape with
incorrect as	a bond angle of 107 ⁰
Dis	NH ₃ has a trigonal pyramidal shape with a
incorrect oc	bond angle of 107 ⁰

The correct answer is A because:

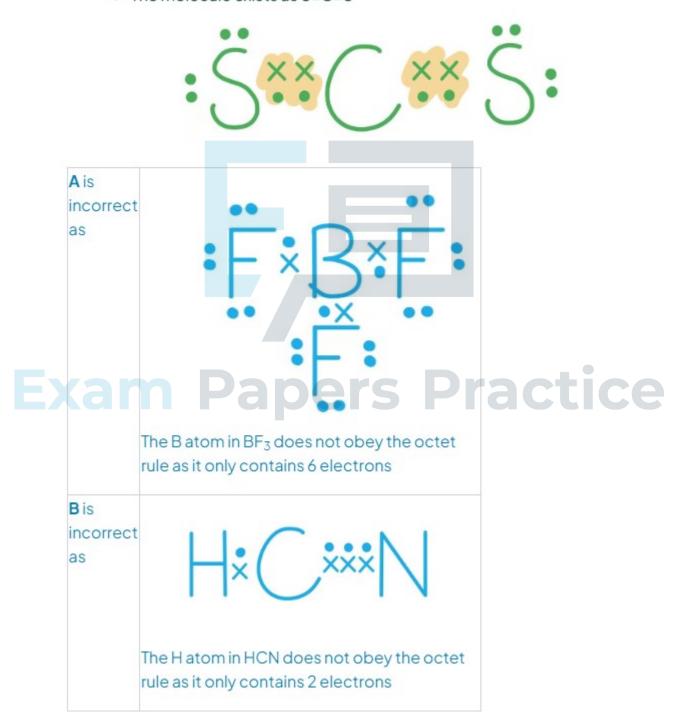
- Silicon dioxide is a giant covalent structure consisting of silicon and oxygen
- The structure of silicon dioxide is the same as diamond a tetrahedral shape consisting of strong covalent bonds


- Each silicon atom is bonded to four oxygen atoms, and each oxygen atom is bonded to two silicon atoms
- Silicon dioxide will not exist as a discrete molecule as the structure is giant covalent which is part of a network of atoms
- Therefore the shape of the silicon dioxide molecule is irrelevant and incorrect

B, C & D are	these are not the correct
incorrect as	combination of statements

The correct answer is C because:

- Bond angle a is 109.5°
 - o The shape will be tetrahedral
- Bond angle a is C-C-C where the central C atom is bonded to one H atom and three C atoms, therefore there are 4 bonding pairs of electrons and no lone pairs
- Bond angle b is 120°
 - o The shape will be trigonal planar
- Bond angle b is C-C-O where the central C atom is bonded to 1C atom, and 2 O atoms, one of which is a C=O bond
 - The C=O contains 2 bonding pairs of electrons
- There are 'hidden hydrogens' in the structure shown which makes it more challenging so check the structure carefully


A, B & D is incorrect as

these are not the correct bond angles for tetrahedral and trigonal planar molecules

The correct answer is **D** because:

- The molecule CS2 does obey the octet rule as shown in the diagram
- The central carbon atom and both S atoms have 8 electrons
 - The molecule exists as S=C=S

The correct answer is **D** because:

- . Diamond is an allotrope of carbon and is a giant covalent structure
- The carbon atoms in diamond are arranged in a tetrahedral structure as each atom is bonded to 4 other carbon atoms, therefore the shape is tetrahedral
- Buckminsterfullerene, C₆₀, is also an allotrope of carbon, though, it is a simple molecule and will therefore have a much lower boiling point than diamond and graphene
- Graphene is also an allotrope of carbon and is a giant covalent structure
- Each carbon atom is bonded to three other carbon atoms in a trigonal planar arrangement, therefore the bond angle is 120°

A is incorrect as	the shape of the diamond structure is not square planar, the melting point of buckminsterfullerene is not relatively high and the bond angle in graphene is not 90°
B is incorrect as	the bond angle in graphene is not 107°
C is incorrect as	the shape of the diamond structure is not trigonal planar, the melting point of buckminsterfullerene is not relatively high and the bond angle in graphene is not 109.5°
asked abo	hree different types of structure being out in this question, and three different so take care to read the question and select er

Exam Papers Practice