4.2 Regular languages	Name:	
	Class:	
	Date:	

Time

Marks: 162 marks

206 minutes

Comments:

Q1.

Postcodes are used to aid the sorting of mail and help to ensure that mail being sent arrives at the correct destination as quickly as possible.

The format of a UK postcode (ignoring any spaces) is shown in Figure 1.
Figure 1

```
- 1 or 2 letters
- followed by:
    - }1\mathrm{ numeric digit or
    - 2 numeric digits or
    - 1 numeric digit then }
letter
- followed by }1\mathrm{ numeric digit
- followed by }2\mathrm{ letters
```

When a post box is emptied in the town of Ipswich the mail in the post box is taken to a central sorting office. Each item is looked at and placed in one of three vans depending upon the postcode written on the envelope.

Postcodes that begin with IP1, IP2, IP3 or IP4 followed by one numeric digit and two letters, eg IP2 8QY, are for mail being sent to an address in the town of lpswich and go in Van A. Other postcodes that begin with IP, eg IP5 3QW, are for areas not in the town but near to Ipswich and go in Van B. Postcodes that start with anything other than IP, eg CO3 5FN, are not for the Ipswich area and go in Van C. IP postcodes do not use the full range of formats available for UK postcodes.

A finite state machine (FSM) could be used to sort mail using postcodes. Figure 2 shows a state transition diagram for an FSM used at the Ipswich sorting office.

In Figure 2, if a transition is not defined from a state for a particular input symbol then the FSM will stop processing the input and it will be rejected.
(a) If the FSM in Figure 2 reaches state S12 what does it mean?
\qquad
\qquad
(b) If the FSM in Figure 2 finishes at state S 11 what does it mean?
\qquad
\qquad
(c) Assuming that the FSM in Figure 2 can be used to recognise any valid IP postcode, state one format used for UK postcodes that IP postcodes do not use.
\qquad
\qquad

Figure 2

(d) The language recognised by an FSM can also be represented by a regular expression. When writing regular expressions $\backslash d$ is used to represent any numeric digit and \backslash a is used to represent any alphabetic character.

For example, the regular expression $\backslash \mathrm{d} \backslash \mathrm{d} \backslash \mathrm{a} \backslash \mathrm{d}$ describes the language of all
strings that contain two numeric digits followed by one letter and then one numeric digit.

Write a regular expression that represents a valid UK postcode as described in Figure 1. In your answer you should only use the । metacharacter once.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q2.
The figure below shows the state transition diagram of a finite state machine (FSM) used to control a vending machine.

The vending machine dispenses a drink when a customer has inserted exactly 50 pence. A transaction is cancelled and coins returned to the customer if more than 50 pence is inserted or the reject button (R) is pressed. The vending machine accepts 10,20 and 50 pence coins. Only one type of drink is available.

(a) An FSM can be represented as a state transition diagram or as a state transition table.
The table is an incomplete state transition table for part of the figure.
Complete the table by filling in the unshaded cells.

Original State	Input	New State
S30	10	S40
S30		
S30		
S30		

(b) The vending machine is to be adapted so that it also accepts 5 p coins. What is the minimum number of states that will need to be added to the FSM shown in the figure so that 5 p coins are also accepted?
\qquad
\qquad

Q3.

A bar code scanner is connected to a computerised point of sale system (till). When a product is sold, the bar code that is printed on the product is scanned by the scanner and transmitted to the point of sale system.

This transmission uses asynchronous serial communication and odd parity.
Figure 1 shows the ASCII code for the character " 9 ", which has been read from the bar code, being transmitted to the point of sale system.
(a) Write the missing values of the stop bit, parity bit and start bit on Figure 1.

		0	1	1	1	0	0	1	
Stop Bit	Parity Bit	ASCII Code							

Direction of data transmission
(b) Explain what asynchronous data transmission is and why stop and start bits are required when asynchronous data transmission is used.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

As part of the process of preparing the data for transmission, the 7-bit ASCII code (0111001) is processed by a Mealy machine (a type of Finite State Machine with output).

The ASCII code is processed from left to right, i.e. the leftmost 0 is the first digit to be processed.

Figure 2 shows a diagram of the Mealy machine. Each transition is labelled with the input symbol that will trigger the transition, followed by a comma, followed by the output that will be produced.

Figure 2

(c) What output is generated by the Mealy machine in Figure 2 for the input 0111001?

(d) The last digit output by the Mealy machine is used in the transmission.

Explain what this last digit represents.
\qquad
\qquad
(e) Serial communication has been chosen instead of parallel communication even though the scanner and point of sale system are located next to each other.

State two reasons why this choice is appropriate.
Reason 1 \qquad
\qquad

Reason 2 \qquad
\qquad
\qquad

Q4.
The table shows three definitions of a language for signed binary numbers, each written using a different standard notation.

All three definitions are supposed to be of the same language for signed binary numbers, but one of them contains an error which means that it defines a different language.

1	<signedbinary> ::= + <binary> \| - <binary> \| <binary> <binary> ::= <bit> \| <bit> <binary> <bit> ::= 0 \| 1
2	
3	$(+\mid-)(0 \mid 1)^{+}$

(a) What is the name of the standard notation used in definition $\mathbf{2}$ in the table?
(b) State the number of the definition ($\mathbf{1}$ to $\mathbf{3}$) in the table that does not define the same language as the other two definitions.

(c) Explain how the language defined by the definition that you have identified in part (b) would differ from the language defined by the other two definitions.
\qquad
\qquad
\qquad

The diagram shows a finite state automaton that recognises a language.

(d) Write a regular expression that would recognise the same language as the finite state automaton in the diagram.
\qquad
(Total 4 marks)

Q5.

Figure 1 contains the pseudo-code for a program to output a sequence according to the 'Fizz Buzz' counting game.

Figure 1

```
            OUTPUT "How far to count?"
            INPUT HowFar
            WHILE HowFar < 1
            OUTPUT "Not a valid number, please try again."
            INPUT HowFar
        ENDWHILE
            FOR MyLoop \leftarrow1 TO HowFar
            IF MyLoop MOD 3 = 0 AND MyLoop MOD 5 = 0
```

EXAM AAPERS PRACTICE
IF MyLoop MOD $3=0$
THEN
OUTPUT "Fizz"
ELSE
IF MyLoop MOD $5=0$
THEN
OUTPUT "Buzz"
ELSE
OUTPUT MyLoop
ENDIF
ENDIF
ENDIF
ENDFOR

What you need to do:

Write a program that implements the pseudo-code as shown in Figure 1.
Test the program by showing the result of entering a value of 18 when prompted by the program.

Test the program by showing the result of entering a value of -1 when prompted by the program.

Evidence that you need to provide

(a) Your PROGRAM SOURCE CODE for the pseudo-code in Figure 1.
(b) SCREEN CAPTURE(S) for the tests conducted when a value of 18 is entered by the user and when a value of -1 is entered by the user.

The main part of the program uses a FOR repetition structure.
(c) Explain why a FOR repetition structure was chosen instead of a whILE repetition structure.
\qquad
\qquad
(d) Even though a check has been performed to make sure that the variable HowFar is greater than 1 there could be inputs that might cause the program to terminate unexpectedly (crash).

Provide an example of an input that might cause the program to terminate and describe a method that could be used to prevent this.
\qquad

\qquad
\qquad
(e) Programs written in a high level language are easier to understand and maintain than programs written in a low level language.

The use of meaningful identifier names is one way in which high level languages can be made easier to understand.

State three other features of high level languages that can make high level language programs easier to understand.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(f) The finite state machine (FSM) shown in Figure 2 recognises a language with an alphabet of a and b.

Figure 2

Input strings of a and aabba would be accepted by this FSM.
In the table below indicate whether each input string would be accepted or not accepted by the FSM in Figure 2.

If an input string would be accepted write YES.
If an input string would not be accepted write NO.

(g) In words, describe the language (set of strings) that would be accepted by this FSM shown in Figure 2.
\qquad
\qquad
\qquad
\qquad
(Total 20 marks)

Q6.
A finite state machine (FSM) can be used to define a language: a string is allowed in a language if it is accepted by the FSM that represents the rules of the language.
Figure 1 shows the state transition diagram for an FSM.

Figure 1

An FSM can be represented as a state transition diagram or as a state transition table. The table below is an incomplete state transition table for Figure 1.
(a) Complete the table.

Original state	Input	New state	
S3			
S3			

(b) Any language that can be defined using an FSM can also be defined using a regular expression.

The FSM in Figure 1 defines the language that allows all strings containing at least, either two consecutive 1s or two consecutive 0s.

The strings 0110,00 and 01011 are all accepted by the FSM and so are valid strings in the language.

The strings 1010 and 01 are not accepted by the FSM and so are not valid strings in the language.

Write a regular expression that is equivalent to the FSM shown in Figure 1.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Backus-Naur Form (BNF) can be used to define the rules of a language.

Figure 2 shows an attempt to write a set of BNF production rules to define a
language of full names.

Figure 2

Note: underscores ($_$) have been used to denote spaces. Note: rule numbers have been included but are not part of the BNF rules.

Rule
number

```
1 <fullname> ::= <title>_<name>_<endtitle> |
    <name> |
    <title>_<name> |
    <name> <endtitle>
2 <title> ::= MRS | MS | MISS | MR | DR | SIR
3 <endtitle> ::= ESQUIRE | OBE | CBE
4 <name> ::= <word> ।
5 <word> ::= <char><word>
6 <char> ::= A | B | C | D | E | F | G | H | I |
    | R |
```

BNF can be used to define languages that are not possible to define using regular expressions. The language defined in Figure 2 could not have been defined using regular expressions.

Complete the table below by writing either a ' \mathbf{Y} ' for $\mathbf{Y e s}$ or ' \mathbf{N} ' for $\mathbf{N o}$ in each row.

Rule number (given in Figure 2)	Could be defined using a regular expression
1	
2	
3	
4	
5	
6	

(d) There is an error in rule 5 in Figure 2 which means that no names are defined by the language.

Explain what is wrong with the production rule and rewrite the production rule so that the language does define some names - the names 'BEN D JONES', 'JO GOLOMBEK' and 'ALULIM' should all be defined.
\qquad
\qquad
\qquad

Q7.

(a) Represent the denary number 55 using 8-bit unsigned binary.
\qquad
\qquad
(b) Represent the denary number 55 using hexadecimal.
\qquad
\qquad

(c) Why are bit patterns often displayed using hexadecimal instead of binary?

(d) Represent the denary number -59 as an 8-bit two's complement binary integer.
\qquad
(e) Represent the denary number 5.625 as an unsigned binary fixed point number with three bits before and five bits after the binary point.
\qquad
\qquad
\qquad
\qquad
(f) The ASCII system uses 7 bits to represent a character. The ASCII code in denary for the numeric character ' 0 ' is 48 ; other numeric characters follow on from this in sequence.

The numeric character ' 0 ' is represented using 7 bits as 0110000 .
Using 7 bits, express the ASCII code for the character ' 6 ' in binary.
\qquad
\qquad
(g) How many different character codes can be represented using 7-bit ASCII?
\qquad
\qquad
(h) Examples of logical bitwise operators include AND, OR, NOT and XOR.

Describe how one of these logical bitwise operators can be used to convert the 7-bit ASCII code for a numeric character into a 7 -bit pure binary representation of the number, (eg 0110001 for the numeric character '1' would be converted to 0000001).

(i) Characters are transmitted using an 8-bit code that includes the 7-bit ASCII code and a single parity bit in the most significant bit. A parity bit is added for error checking during data transmission.

E2. Using even parity, what 8 -bit code is sent for the numeric character '0'?
\qquad
(j) Hamming code is an alternative to the use of a single parity bit. Hamming code uses multiple parity bits - this allows it to correct some errors that can occur during transmission.

The parity bits are located in the power of two bit positions (1, 2, 4, 8, etc.). The other bit positions are used for the data bits.

Describe how the receiver can detect and correct a single-bit error using Hamming code.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(k) Figure 1 shows the bit pattern received in a communication that is using even parity Hamming code. The data bits received are 1101000.

Figure 1

Bit position	11	10	9	8	7	6	5	4	3	2	1
Bit	1	1	0	0	1	0	0	0	0	0	1

There has been a single-bit error in the data transmission.
Which bit position from the bit pattern in Figure 1 contains an error?

Figure 2 shows a Finite State Machine (FSM) represented as a state transition diagram.
The machine takes a bit pattern as an input. The bit pattern is considered to be valid if the machine ends up in the accepting state S_{x}. The bit patterns 0111000 and 0110001 are valid; the bit patterns 010011 and 01110111 are not valid. Bit patterns are processed

Figure 2

(I) Is the bit pattern 0111010 a valid input for the FSM shown in Figure 2?

(m) A finite state machine can also be represented as a state transition table. The table below shows part of the state transition table that represents the finite state machine shown in Figure 2. The state transition table is only partially complete.

\section*{EXAM
 | Initial State | Input | New State |
| :---: | :---: | :---: |
| S_{9} | 1 | |
| S_{y} | | |
| S_{y} | | |}

Complete the table by filling in the unshaded cells.
(n) What is the purpose of the FSM shown in Figure 2?
\qquad
\qquad
(o) The state S_{i} in the FSM shown in Figure 2 is not necessary and is going to be removed from the FSM.

Describe the change that needs to be made so that state S_{i} can be removed without changing the functionality of the FSM.
\qquad
\qquad

Q8.

The diagram below shows a Finite State Automaton (FSA). The FSA has input alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and six states, $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}, \mathrm{~S}_{5}$ and S_{6}.

(a) Complete the empty cells in the part of the transition table shown below for the FSA in the diagram.

Current State	S_{1}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{3}$
Input Symbol	a	b	c	a	b	c			
Next State	S_{2}	$\mathrm{~S}_{6}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{6}$			

(b) Give the name of the state that the FSA will end up in when processing the string abcb.
\qquad
(c) Describe the purpose of state S_{6}.
\qquad
\qquad
(d) The FSA in the diagram above accepts strings that consist of:

- a letter a
- followed by zero or more occurrences of the string bc and
- ending with a second letter a.

For any FSA, it is possible to write a regular expression that will match the same language (set of strings) as the FSA.

Write a regular expression that will match the same language that is accepted by the FSA above.
\qquad
\qquad
(e) The Turing Machine is a more powerful abstract model of computation than the FSA.

Explain why the Turing Machine model can be used to recognise a greater range of languages than an FSA could.

Q9.
Regular expressions can be used to search for strings.
(a) For each of the following regular expressions, describe the set of strings that they would match.
EXAM PAPERS PRACTICE
\qquad
(ii) b ?c
\qquad
\qquad
(b) Write a regular expression that matches the letter b, followed by zero or more occurrences of the string cd followed by either a single letter e or the string fg.
\qquad
\qquad

Q10.
(a) What is the denary equivalent of the hexadecimal number A7?

You may use the space below for rough working. You may get some marks for your working, even if your answer is incorrect.

Answer \qquad
(b) Represent the denary value 7.625 as an unsigned binary fixed point number, with 4 bits before and 4 bits after the binary point.

Use the space below for rough working.

(c) Represent the denary value -18 as an 8-bit two's complement binary integer.

Answer \qquad
(d) What is the largest positive denary value that can be represented using 8-bit two's complement binary?

Use the space below for rough working.

Answer \qquad
(e) Describe how 8-bit two's complement binary can be used to subtract one number from another number. In your answer you must show how the calculation 23 - 48 would be completed using the method that you have described.

You may use the space below for rough working.

Answer \qquad

Figure 1 shows a state transition diagram for a finite state machine (FSM).
Table 1 shows the outputs produced by the finite state machine in Figure 1 for some possible input strings. Some of the outputs are missing from the table below. Input strings are processed starting with the right-most bit.

Figure 1

Table 1

Input string	Output string
00010011	11101101
00010010	(a)
00010100	11101100
00010101	(b)

(f) What output string should be in position (a) in the table?
(g) What output string should be in position (b) in the table?
\qquad
\qquad
(h) What is the purpose of the finite state machine shown in Figure 1?
\qquad
\qquad
(i) A finite state machine can be represented as a state transition diagram or as a state transition table. Table 2 is an incomplete state transition table for Figure 1.

Complete the unshaded cells in the table below.

Q11.
A particular Turing machine has states $\mathrm{S}_{\mathrm{B}}, \mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{\mathrm{R}}$ and $\mathrm{S}_{\mathrm{T}} . \mathrm{S}_{\mathrm{B}}$ is the start state and S_{T} is the stop state. The machine stores data on a single tape which is infinitely long in one direction. The machine's alphabet is $0,1, \#, x, y$ and \square where \square is the symbol used to indicate a blank cell on the tape.

The transition rules for this Turing machine can be expressed as a transition function δ.
Rules are written in the form:
$\delta($ Current State, Input Symbol $)=($ Next State, Output Symbol, Movement $)$
So, for example, the rule:
$\delta\left(S_{B}, 1\right)=\left(S_{1}, y, \longrightarrow\right)$
means:

IF the machine is currently in state S_{B} AND the input symbol read from the tape is 1
THEN the machine should change to state S_{1}, write a y to the tape and move the read/ write head one cell to the right

The machine's transition function, δ, is defined by:

$\delta\left(\mathrm{S}_{\mathrm{B}}, 0\right)$	$=\left(S_{0}, \mathrm{x}, \rightarrow\right)$	$\delta\left(S_{1}, 0\right)$	$=\left(S_{1}, 0, \rightarrow\right)$
$\delta\left(S_{B}, 1\right)$	$=\left(S_{1}, \mathrm{y}, \rightarrow\right)$	$\delta\left(S_{1}, 1\right)$	$=\left(S_{1}, 1, \rightarrow\right)$
$\delta\left(S_{B}, \#\right)$	$=\left(S_{T}, \#, \rightarrow\right)$	$\delta\left(S_{1}, \#\right)$	$=\left(S_{1}, \#, \rightarrow\right)$
		$\delta\left(S_{1}\right.$, ㅁ)	$\left(\mathrm{S}_{\mathrm{R}}, 1, \leftarrow\right)$
$\delta\left(\mathrm{S}_{0}, 0\right)$	$=\left(S_{0}, 0, \rightarrow\right)$		
$\delta\left(\mathrm{S}_{0}, 1\right)$	$=\left(S_{0}, 1, \rightarrow\right)$	$\delta\left(\mathrm{S}_{\mathrm{R}}, 0\right)$	$=\left(S_{R}, 0, \leftarrow\right)$
$\delta\left(S_{0}, \#\right)$	$=\left(S_{0}, \#, \rightarrow\right)$	$\delta\left(S_{R}, 1\right)$	$=\left(S_{R}, 1, \leftarrow\right)$
$\delta\left(S_{0}\right.$, ■)	$=\left(S_{R}, 0, \leftarrow\right)$	$\delta\left(\mathrm{S}_{\mathrm{R}}, \#\right)$	$\left(\mathrm{S}_{\mathrm{R}}, \#, \leftarrow\right)$
		$\delta\left(S_{R}, \mathrm{x}\right)$	$=\left(S_{B}, 0, \rightarrow\right)$
		$\delta\left(S_{R}, \mathrm{y}\right)$	$=\left(S_{B}, 1, \rightarrow\right)$

Figure 1 shows an unlabelled finite state transition diagram for this machine. Some of the state transition arrows represent more than one of the machine's transition rules. For example, the arrow labeled 1 represents the three rules: $\delta\left(S_{0}, 0\right)=\left(S_{0}, 0, \rightarrow\right), \delta\left(S_{0}\right.$, 1) $=\left(\mathrm{S}_{0}, 1, \rightarrow\right)$ and $\delta\left(\mathrm{S}_{0}, \#\right)=\left(\mathrm{S}_{0}, \#, \rightarrow\right)$.

(a) (i) Which states are represented by the labels (2) and (3) in Figure 1?
\qquad (3)
(ii) Which of the machine's transition rule(s) is / are represented by the arrow labelled (4) in Figure 1?
\qquad
\qquad
(iii) Which of the machine's transition rule(s) is / are represented by the arrow labelled (5) in Figure 1?

The machine's transition rule, δ, is repeated here so that you can answer part (b) without having to turn back in the question paper booklet.
$\delta\left(\mathrm{S}_{\mathrm{B}}, 0\right)=\left(\mathrm{S}_{0}, \mathrm{x}, \rightarrow\right)$
$\delta\left(\mathrm{S}_{\mathrm{B}}, 1\right)=\left(\mathrm{S}_{1}, \mathrm{y}, \rightarrow\right)$
$\delta\left(\mathrm{S}_{\mathrm{B}}, \#\right)=\left(\mathrm{S}_{\mathrm{T}}, \#, \rightarrow\right)$

$\delta\left(\mathrm{S}_{0}, 0\right)=\left(\mathrm{S}_{0}, 0, \rightarrow\right)$
$\delta\left(\mathrm{S}_{0}, 1\right)=\left(\mathrm{S}_{0}, 1, \rightarrow\right)$
$\delta\left(\mathrm{S}_{0}, \#\right)=\left(\mathrm{S}_{0}, \#, \rightarrow\right)$
$\delta\left(\mathrm{S}_{0}\right.$, ■ $)=\left(\mathrm{S}_{\mathrm{R}}, 0, \leftarrow\right)$

$$
\begin{aligned}
& \delta\left(\mathrm{S}_{1}, 0\right)=\left(\mathrm{S}_{1}, 0, \rightarrow\right) \\
& \delta\left(\mathrm{S}_{1}, 1\right)=\left(\mathrm{S}_{1}, 1, \rightarrow\right) \\
& \delta\left(\mathrm{S}_{1}, \#\right)=\left(\mathrm{S}_{1}, \#, \rightarrow\right) \\
& \delta\left(\mathrm{S}_{1}, \square\right)=\left(\mathrm{S}_{\mathrm{R}}, 1, \leftarrow\right) \\
& \delta\left(\mathrm{S}_{\mathrm{R}}, 0\right)=\left(\mathrm{S}_{\mathrm{R}}, 0, \leftarrow\right) \\
& \delta\left(\mathrm{S}_{\mathrm{R}}, 1\right)=\left(\mathrm{S}_{\mathrm{R}}, 1, \leftarrow\right) \\
& \delta\left(\mathrm{S}_{\mathrm{R}}, \#\right)=\left(\mathrm{S}_{\mathrm{R}}, \#, \leftarrow\right) \\
& \delta\left(\mathrm{S}_{\mathrm{R}}, \mathrm{x}\right)=\left(\mathrm{S}_{\mathrm{B}}, 0, \rightarrow\right) \\
& \delta\left(\mathrm{S}_{\mathrm{R}}, \mathrm{y}\right)=\left(\mathrm{S}_{\mathrm{B}}, 1, \rightarrow\right)
\end{aligned}
$$

(b) This Turing machine is carrying out a computation. The machine starts in state S_{B} with the string 01\# on the tape. All other cells contain the blank symbol, \square (not shown).

Trace the computation of the Turing machine, using the transition function δ. Show the contents of the tape, the current position of the read / write head and the current state as the input symbols are processed. The first three steps and final state have been completed for you.

EXAM PAPERS PRACTICE

1.

State

10.

State

State

State

12.
 State

13.

State
6.

14.

State

State

15.
State

8.

State
16.

(i) Describe the purpose of the symbols x and y in this Turing machine's A alphabet. $\mathrm{A}=\mathrm{B}$
\qquad
\qquad
(ii) What does the Turing machine do?
\qquad
\qquad
(Total 11 marks)

Q12.

The diagram below shows the state transition diagram of a finite state machine (FSM) used to control a vending machine.

The vending machine dispenses a drink when a customer has inserted exactly 50 pence. A transaction is cancelled and coins returned to the customer if more than 50 pence is
inserted or the reject button (R) is pressed. The vending machine accepts 10,20 and 50 pence coins. Only one type of drink is available.
The only acceptable inputs for the FSM are 10, 20, 50 and R.

(a) An FSM can be represented as a state transition diagram or as a state transition table. The table below is an incomplete state transition table for part of the diagram above.
[2. Completel the missing sections of the four rows of the table below. ${ }^{\text {. }}$ E

Original state	Input	New state
S0	10	S10
S0		
S0		
S0		

(b) There are different ways that a customer can provide exactly three inputs that will result in the vending machine dispensing a drink. Three possible permutations are " $20,10,20$ ", " $10, R, 50$ " and " $10,50,50$ ".

List four other possible permutations of exactly three inputs that will be accepted by the FSM shown in the diagram above.
\qquad
\qquad
\qquad

Q13.

The diagram below shows some production rules that have been used to define the syntax of valid mathematical expressions in a particular programming language.

```
<expression> ::= <factor> | <factor> * <factor> | <factor> / <factor>
<factor> ::= <term> | <term> + <term> | <term> - <term>
<term> ::= - <expression> | <number>
<number> ::= <digit> | <digit> <number>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

(a) What notation method has been used in the diagram above?
\qquad
(b) Complete the table below by writing Yes or No in the empty column to indicate whether or not the strings are valid examples of the statement types from the diagram above.

Statement type	String	Valid (Yes / No)
<number>	129.376	
<factor>	$23+17$	

(c) A tree can be used to demonstrate that an <expression> is valid. This is

Complete the parse tree below to show that $8 * 4+21$ is a valid <expression>.

Q14.

A particular long-distance data transmission system transmits data signals as electrical voltages using copper wire.
(a) What is the relationship between the bandwidth of the copper wire and the bit rate at which the data can be transmitted?

(b) The system is affected by latency.

What is latency in the context of data communications?
\qquad

The system uses four different voltage levels so that two data bits can be transmitted with each signal change.

The table below shows the signal levels (in volts) that the system uses for particular binary patterns.

Binary pattern	Signal level (volts)
00	0
01	2
10	4
11	6

Using this system, the binary pattern 011100011011 would be transmitted as the voltage sequence $2,6,0,2,4,6$ as shown in the graph below:

(c) What, precisely, is the relationship between the bit rate and the baud rate for this system?
\qquad
\qquad
(d) A Moore machine is a type of finite state machine that produces output. The transitions are labelled with the inputs and each state is labelled with a name and the output that it produces; if a particular state has no output then it is labelled with just a name.

The diagram below shows an incomplete diagram of a Moore machine that will convert a two-bit binary code into the signal level (in volts) that is transmitted to represent it, as listed in the table above.

Complete the diagram below. Label all of the transitions and the states that are currently unlabelled. The machine should work for the four binary patterns $00,01,10$ and 11.

Q15.
(a) Complete the missing parts of the question posed by the Halting problem in the diagram below.

Is it possible in general to \qquad that can tell, given any program and its inputs and without
\qquad , whether the given program with
its given inputs will halt?
(b) What is the significance of the Halting problem?
\qquad
\qquad

Q16.

Regular expressions can be used to search for strings. For example, de (f|g)*h+ matches any string that starts with de and is followed by zero or more instances of either f or g followed by one or more instances of h

Write regular expressions that will match:
(a) any string that starts with a letter a, ends with a letter c and has one or more occurrences of the letter b in the middle of it, ie the expression should match the strings abc, abbc, abbbe and so on.
\qquad
(b) any string that starts with either a 0 or a 1, followed by zero or more occurrences of the digit 1 ie the expression should match the strings $0,1,01,11,011$ and so on.
\qquad
\qquad

Q17.

The diagram below shows a Finite State Automaton (FSA). The FSA has input alphabet $\{0,1\}$ and five states, $S_{1}, S_{2}, S_{3}, S_{4}$ and S_{5}.

(a) Complete the transition table below for the FSA in the diagram above.

Current State	S_{1}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{5}$
Input Symbol	0	1	0	1	0	1				
Next State	S_{2}	$\mathrm{~S}_{3}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{3}$				

(b) The state S_{4} is a special state. This is indicated by the double circle in the diagram. What does the double circle signify?

EXAM PAPERS PRACTICE

(c) Write Yes or No in each row of the table below to indicate whether or not each of the four input strings would be accepted by the FSA in the diagram above.

Input String	String Accepted? (Yes / No)
101	
000	
010001101	
0100011011	

(d) Describe the language (set of strings) that the FSA will accept.
\qquad
\qquad
\qquad

Q18.

Regular expressions can be used to search for strings.
(a) For each of the following regular expressions, describe the set of strings that they would find.
(i) $a+b$
\qquad
\qquad
(ii) a ? b
(iii) (ab) *

EX (b) Write regular expoessions that match: PRACTICE
(i) either Clare or Claire.
\qquad
(ii) any non-empty string that:

- starts with 10
- has zero or more occurrences of any combination of 0 or 1 in the middle
- ends with 01

Example strings that the expression should match are 1001, 100010101, 101111010101001.
\qquad

Q19.

A particular Turing machine has states $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and S_{3}.
S_{1} is the start state and S_{3} is the stop state.
The machine uses one tape which is infinitely long in one direction to store data.
The machine's alphabet is $0,1, o, e$ and \square, where \square is the symbol used to indicate a blank cell on the tape.

The transition rules for this Turing machine can be expressed as a transition function δ. Rules are written in the form:
$\delta($ Current State, Input Symbol $)=($ Next State, Output Symbol, Movement $)$
So, for example, the rule:

$$
\delta\left(S_{1}, 0\right)=\left(S_{1}, 0, \rightarrow\right)
$$

means
IF the machine is currently in state S_{1} AND the input symbol read from the tape is 0
THEN the machine should remain in state S_{1}, write a 0 to the tape and move the read/write head one cell to the right

The machine's transition function, δ, is defined by:

$$
\begin{aligned}
& \delta\left(\mathrm{S}_{1}, 0\right)=\left(\mathrm{S}_{1}, 0, \rightarrow\right) \\
& \delta\left(\mathrm{S}_{1}, 1\right)=\left(\mathrm{S}_{2}, 1, \rightarrow\right) \\
& \delta\left(\mathrm{S}_{1}, \square\right)=\left(\mathrm{S}_{3}, \mathrm{e}, \rightarrow\right) \\
& \delta\left(\mathrm{S}_{2}, 0\right)=\left(\mathrm{S}_{2}, 0, \rightarrow\right)
\end{aligned}
$$

The diagram below shows a partially labelled finite state transition diagram for this machine.

Some labels are missing and have been replaced by numbers such as (1). Each state transition arrow is labelled with the input symbol, the output symbol and the direction of movement, in that order. For example ($\square, \mathrm{e}, \rightarrow$) means that if the input symbol is \square, an e is written to the tape and the read/write head moves right one cell.

(a) Four labels are missing from the diagram above.

Write the missing labels in the table below.

Number	Correct Label
$\boldsymbol{1}$	
$\mathbf{2}$	
3	
$\boldsymbol{4}$	

(b) The Turing machine is carrying out a computation using one tape which is infinitely long in one direction. The machine starts in state S_{1} with the string 01100 on the
 All other cells contain the blank symbol, \square. The read/write head is positioned at the leftmost zero, as indicated by the arrow.

Trace the computation of the Turing machine, using the transition function δ. Show the contents of the tape, the current position of the read/write head and the current state as the input symbols are processed.

\qquad Current State:

\qquad Current State:

\qquad Current State:

\qquad Current State:
(c) What is the purpose of the algorithm represented by this Turing machine?

(d) Explain the importance of the theory of Turing machines to the subject of computation.

EXAM PAPERS PRACTICE
\qquad
\qquad
(Total 9 marks)

Q20.
(a) A state transition diagram models the operation of a hotel lift. A program is written to simulate the behaviour of the lift in a hotel.

Describe three states that should be present in this diagram.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Figure 1 shows a state transition diagram for a problem, which has two states SI and S2.

Figure 1

Table 1 is a state transition table for Figure 1. The Next State column is incomplete.

