Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

4.2 Correlation \& Regression

AA HL

Exam Papers Practice

4.2.1 Bivariate Data

Scatter Diagrams

What does bivariate data mean?

- Bivariate data is data which is collected on two variables and looks at how one of the factors affects the other
- Each data value from one variable will be paired with a data value from the other variable
- The two variables are often related, but do no t have to be

What is a scatter diagram?

- A scatter diagram is a way of graphing bivariate data
- One variable will be on the x-axis and the other will be on the y-axis
- The variable that can be controlled in the data collection is known as the independent or explanat ory variable and is plotted on the x-axis
- The variable that is measured ordiscovered in the data collection is known as the dependent orresponse variable and is plotted on the y-axis
- Scatter diagrams can contain outliers that do not follow the trend of the data

© Exam Tip

- If you use scatter diagrams in your Internal Assessment then be aware that finding outliers for bivariate data is different to finding outliers for univariate data
- (x, y) could be an outlierfor the bivariate data even if x and y are not outliers for their separate univariate data

Correlation

What is correlation?

- Correlation is how the two variables change in relation to each other
- Correlation could be the result of a causal relationship but this is not always the case
- Linear correlation is when the changes are proportional to each other
- Perfect linear correlation means that the bivariate data will all lie on a straight line on a scatter diagram
- When describing correlation mention
- The type of the correlation
- Positive correlation is when an increase in one variable results in the other variable increasing
- Negative correlation is when an increase in one variable results in the other variable decreasing
- No linear correlation is when the data points don't appear to follow a trend
- The strength of the correlation
- Strong linear correlation is when the data points lie close to a straight line
- Weak linear correlation is when the data points are not close to a straight line
- If there is strong linear correlation you can draw a line of best fit (by eye)
- The line of best fit will pass through the mean point (\bar{x}, \bar{y})
- If you are asked to draw a line of best fit
- Plot the mean point
- Draw a line going through it that follows the trend of the data

What is the difference between correlation and causation?

- It is important to be aware that just because correlation exists, it does not mean that the change in one of the variables is causing the change in the other variable
- Correlation does not imply causation!

Copyig If a change in one variable causes a change in the other then the variables are said to have a © 2024 causalrelationship

- Observing correlation between two variables does not always mean that there is a caus al relationship
- There could be underly ing factors which is causing the correlation
- Look at the two variables in questionand consider the context of the question to decide if there could be a causal relations hip
- If the two variables are temperature and number of ice creams sold at a park then it is likely to be a causal relationship
- Correlation may exist between global temperatures and the number of monkeys kept as pets in the UK but they are unlikely to have a caus al relationship

Worked example

A teacheris interested in the relationship between the number of hours her students spend ona phone per day and the number of hours theyspend on a computer. She takes a sample of nine students and records the results in the table below.

Hours spent ona phone per day	7.6	7.0	8.9	3.0	3.0	7.5	2.1	1.3	5.8
Hours spent on a computerper day	1.7	1.1	0.7	5.8	5.2	1.7	6.9	7.1	3.3

a) Draw a scatter diagram for the data.

b) Describe the correlation.

Strong negative linear corelation

© 2024 Exam Papers Practice

c) Draw a line of best fit.

4.2.2 Correlation \& Regression

Linear Regression

What is linear regression?

- If strong linear correlation exists on a scatter diagram then the data can be modelled by a linear model
- Drawing lines of best fit byeye is not the best method as it can be difficult to judge the best position for the line
- The least squares regression line is the line of best fit that minimises the sum of the squares of the gap between the line and each data value
- It can be calculated by eitherlooking at:
- vertical distances between the line and the data values
- This is the regression line of y on x
- horizontal distances between the line and the data values
- This is the regression line of x on y

How do Ifind the regression line of yon x ?

- The regression line of y on x is written in the form $y=a x+b$
- a is the gradient of the line
- It represents the change in y for each individual unit change in x
- If a is positive this means y increases by afor a unit increase in x
- If a is negative this means y decreases by|a|for a unit increase in x
- bis the \boldsymbol{y}-intercept
- It shows the value of y when x is zero
- You are expected to use your GDC to find the equation of the regression line
- Enter the bivariate data and choose the model " $a \boldsymbol{x}+\boldsymbol{b}$ "
- Remember the mean point (\bar{x}, \bar{y}) will lie on the regression line

How do Ifind the regression line of x on y ?

- The regression line of x on y is written in the form $x=c y+d$
- c is the gradient of the line
- It represents the change in x for each individual unit change in y
- If c is positive this means x increases by cfor a unit increase in y
- If c is negative this means x decreases by|c|for a unit increase in y
- dis the \boldsymbol{x} - intercept
- It shows the value of x when y is zero
- You are expected to use your GDC to find the equation of the regression line
- It is found the same way as the regression line of yon x but with the two data sets switched around
- Remember the mean point (\bar{x}, \bar{y}) will lie on the regression line

How do luse a regression line?

- The regression line can be used to decide what type of correlation there is if there is no scatter diagram
- If the gradient is positive then the data set has positive correlation
- If the gradient is negative then the data set has negative correlation
- The regression line can also be used to predict the value of a dependent variable from an independent variable
- The equation for the yon x line should onlybe used to make predictions fory
- Using a yon x line to predict x is not always reliable
- The equation for the x on y line should onlybe used to make predictions for x
- Using an xon yline to predict yis not always reliable
- Making a prediction within the range of the given data is called int erpolation
- This is usuallyreliable
- The stronger the correlation the more reliable the prediction
- Making a prediction outside of the range of the given data is called extrapolation
- This is much less reliable
- The prediction will be more reliable if the number of data values in the original sample set is bigger
- The yon x and x on y regression lines intersect at the mean point (\bar{X}, \bar{y})

- Exam Tip

- Once you calculate the values of a and b store then in your GDC
- This means youcan use the full displayvalues rather than the rounded values when using
the linearregression equation to predict values
- This avoids rounding errors

Worked example

The table below shows the scores of eight students for a maths test and an English test.
a) Write down the value of Pearson's product-moment correlation coefficient, r.

> Enter data into CDC.
$r=0.79433$...

$$
r=0.794 \text { (3sf) }
$$

b) Write down the equation of the regression line of Y on X, giving your answer in the form $y=a x+b$ where a and b are constants to be found.
$\begin{array}{ll}a \text { is the coefficient of } x & a=0.943579 \ldots \\ b & \text { is the constant term }\end{array} \quad b=-18.05398 \ldots$.
$y=0.944 x-18.1$
c) Write down the equation of the regression line of X on Y, giving your answer in the form $x=c y+d$ where c and d are constants to be found.

Swap the two sets of data
c is the coefficient of $y \quad c=0.668700$..
d is the constant term $d=30.52410$..

$$
x=0.669 y+30.5
$$

d)

Use the appropriate regression line to predict the score on the maths test of a student who got a score of 63 on the English test.

$$
\begin{aligned}
& y=63 \quad \text { so use } x \text { on } y \text { line } \\
& x=(0.668700 \ldots) \times 63+(30.52410 \ldots)=72.652 \ldots
\end{aligned}
$$

Maths score 72.7

PMCC

What is Pearson's product-moment correlation coefficient?

- Pearson's product-moment correlation coefficient (PMCC) is a way of giving a numerical value to a linear relationship of bivariate data
- The PMCC of a sample is denoted by the letter r
- rcan take anyvalue such that $-1 \leq r \leq 1$
- A positive value of r describes positive correlation
- A negative value of r describes negative correlation
- $r=0$ means there is no linear correlation
- $r=1$ means perfect positive linear correlation
- $r=-1$ means perfect negative linear correlation
- The closerto lor-1 the stronger the correlation

$$
r=1
$$

$p=c-1$

$r=-1$

$r=-1$

$r \approx 0.7$

$r=0$

$r \approx-0.4$

Howdo Icalculate Pearson's product-moment correlation coefficient (PMCC)?

- You will be expected to use the statistics mode onyour GDC to calculate the PMCC
- The formula can be useful to deepen yourunderstanding

$$
r=\frac{S_{x y}}{S_{x} S_{y}}
$$

- $S_{x y}=\sum_{i=1}^{n} x_{i} y_{i}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)$ is linked to the covariance
- $S_{x}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}}$ and $S_{y}=\sqrt{\sum_{i=1}^{n} y_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} y_{i}\right)^{2}}$ are linked to the variances
- You do not need to learn this as using your GDC will be expected

When does the PMCC suggest there is a linear relationship?

- Critical values of rindic ate when the PMCC would suggest there is a linear relationship
- In your exam you will be given critic al values where appropriate
- Critical values will depend on the size of the sample
- If the absolute value of the PMCC is bigger than the critical value then this suggests a linear model is appropriate

Copyright
© 2024 Exam Papers Practice

