

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

4.13 Transition Matrices & Markov Chains

IB Maths - Revision Notes

4.13.1 Markov Chains

Markov Chains

What is meant by a "state"?

- States refer to mutually exclusive events with the current event able to change over time
- Examples of states include:
 - Daily weather conditions
 - The states could be: "sunny" and "not sunny"
 - Countries visited by an inspector each day
 - The states could be: "France", "Spain" and "Germany"
 - Store chosen for weekly grocery shop:
 - The states could be: "Foods-U-Like", "Smiley Shoppers" and "Better Buys"

What is a Markov chain?

- A Markov chain is a model that describes a sequence of states over a period of time
 - Time is measured in discrete steps
 - Such as days, months, years, etc
- The **conditions** for a Markov chain are:
 - The probability of a state being the next state in the sequence only depends on the current state
 - For example
 - The 11th state **only depends** on the 10th state

The first 9 states **do not affect** the 11th state

- This probability is called a transition probability
- The transition probabilities do not change over time
 - For example
 - The probability that the 11th state is A given that the 10th state is B is equal to the probability

that the 12th state is A given that the 11th state is B

A Markov chain is said to be regular if it possible to reach any state after a finite period of time Copyregardless of the initial state

What is a transition state diagram?

- A transition diagram is a directed graph
 - The vertices are the states
 - The edges represent the transition probabilities between the states
- The graph can contain
 - Loops
 - These will be the transition probabilities of the next state being the same as the current state
 - Two edges between each pair of vertices
 - The edges will be in opposite directions
 - Each edge will show the transition probability of the state changing in the given direction
- The probabilities on the edges coming out of a vertex add up to 1

💽 Exam Tip

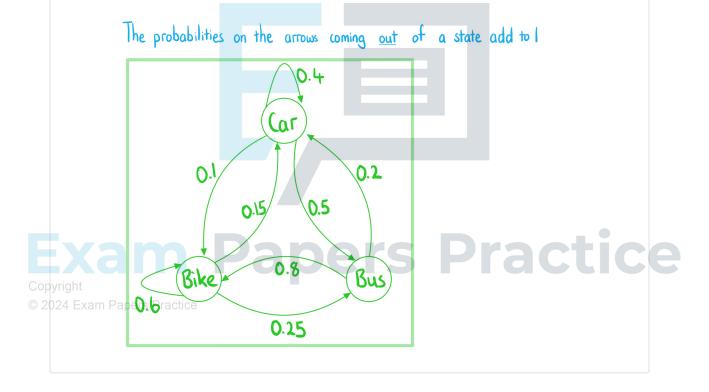
• Drawing a transition state diagram (even when the question does not ask for one) can help you visualise the problem

Worked example

Fleur travels to work by car, bike or bus. Each day she chooses her mode of transport based on the transport she chose the previous day.

- If Fleur travels by car then there is a 40% chance that she will travel by car the following day and a 10% chance that she will travel by bike.
- If Fleur travels by bike then there is a 60% chance that she will travel by bike the following day and a 25% chance that she will travel by bus.
- If Fleur travels by bus then there is an 80% chance that she will travel by bike the following day and a 20% chance that she will travel by car.

Represent this information as a transition state diagram.



4.13.2 Transition Matrices

Transition Matrices

What is a transition matrix?

- A transition matrix *T* shows the transition probabilities between the current state and the next state
 - The columns represent the current states
 - The rows represent the next states
- The element of **T** in the i^{th} row and j^{th} column gives the transition probability t_{ij} of :
 - the **next state** being the state corresponding to **row** *i*
 - given that the current state is the state corresponding to column j
- The probabilities in each column must add up to 1
- The transition matrix depends on how you assign the states to the columns
 - Each transition matrix for a Markov chain will contain the same elements
 - The rows and columns may be in different orders though
 - E.g. Sunny(S) & Cloudy(C) could be in the order Sthen C or C then S

What is an initial state probability matrix?

- An initial state probability matrix s₀ is a column vector which contains the probabilities of each state being chosen as the initial state
 - If you know which state was chosen as the initial state then that entry will be land the others will all be zero
- You can find the state probability matrix s₁ which contains the probabilities of each state being chosen after one interval of time
- $s_1 = Ts_0$

Copyright

How do I find expected values after one interval of time?

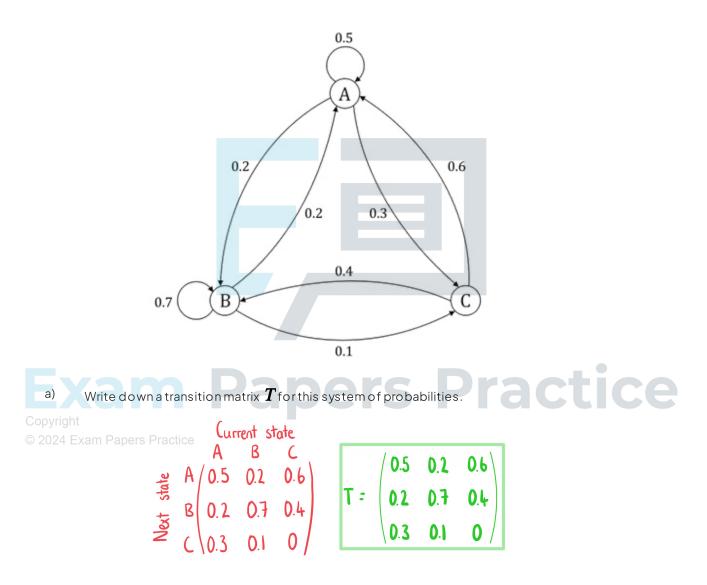
- Suppose the Markov change represents a **population moving between states**
 - Examples include:
 - People in a town switching gyms each year
 - Children choosing a type of sandwich for their lunch each day
- Suppose the total population is fixed and equals N
- You can **multiply the state probability matrix s**₁ by *N* to find the expected number of members of the population at each state

💽 Exam Tip

- If you are asked to find a transition matrix, check that all the probabilities within a column add up to 1
- Drawing a transition state diagram can help you to visualise the problem

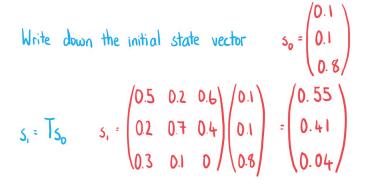
Worked example

Each year Jamie donates to one of three charities: A, B or C. At the start of each year, the probabilities of Jamie continuing donate to the same charity or changing charities are represented by the following transition state diagram:



b) There is a 10% chance that charity A is the first charity that Jamie chooses, a 10% chance for charity B and an 80% chance for charity C. Find the charity which has the highest

probability of being picked as the second charity after the first year.



Charity A has the highest probability of being the second charity picked.

Powers of Transition Matrices

How do I find powers of a transition matrix?

- You can simply use your GDC to find given powers of a matrix
- The power could be left in terms of an **unknown** *n*
 - In this case it would be more helpful to write the transition matrix in diagonalised form (see section 1.8.2 Applications of Matrices) T = PDP⁻¹ where
 - **D** is a **diagonal matrix** of the **eigenvalues**
 - **P** is a matrix of **corresponding eigenvectors**
 - Then *T*ⁿ = *PD*ⁿ*P*⁻¹
 - This is given in the formula booklet
 - Every transition matrix always has an **eigenvalue equal to 1**

What is represented by the powers of a transition matrix?

- The powers of a transition matrix also represent probabilities
- The element of *T*ⁿ in the *t*th row and *j*th column gives the **probability** *t*ⁿ*ii* of :
 - the future state after *n*intervals of time being the state corresponding to row *i*
 - given that the current state is the state corresponding to column j
- For example: Let **T** be a transition matrix with the element t_{2,3} representing the probability that tomorrow is sunny given that it is raining to day
 - The element $t_{2,3}^5$ of the matrix T^5 represents the probability that it is sunny in 5 days' time given that it is raining to day
- The probabilities in each column must still add up to 1

How do I find the column state matrices?

- The column state matrix \mathbf{s}_{n} is a column vector which contains the **probabilities** of each state
 - \sim being chosen after *n* intervals of time given the current state
- Copyright **s**_n depends on **s**₀
- © 2024 To calculate the column state matrix you raise the transition matrix to the power *n* and multiply by the initial state matrix

$$T^n \boldsymbol{s}_0 = \boldsymbol{s}_n$$

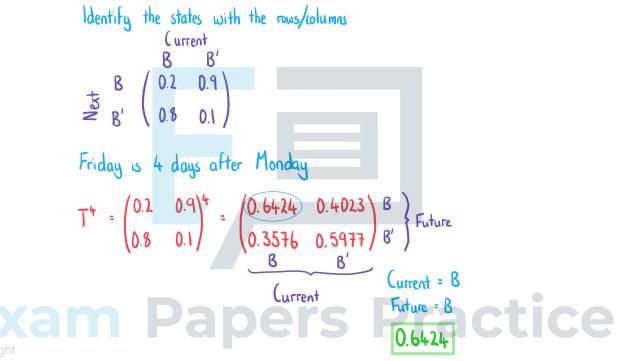
- You are given this in the **formula booklet**
- You can multiply **s**_n by the fixed population size to find the expected number of members of the population at each state after *n* intervals of time

Worked example

At a cat sanctuary there are 1000 cats. If a cat is brushed on a given day, then the probability it is brushed the following day is 0.2. If a cat is not brushed on a given day, then the probability that is will be brushed the following day is 0.9.

The transition matrix T is used to model this information with $T = \begin{pmatrix} 0.2 & 0.9 \\ 0.8 & 0.1 \end{pmatrix}$.

a) On Monday Hippo the cat is brushed. Find the probability that Hippo will be brushed on Friday.



© 2024 Exam Papers Practice

b) On Monday 700 cats were brushed. Find the expected number of cats that will be brushed on the following Monday.

On Monday 700 brushed
$$S_0 = \begin{pmatrix} 0.7 \\ 0.3 \end{pmatrix}$$

Expected numbers after 7 days
Total * $S_7 = \text{Total} \times T^{\frac{2}{5}}_{S_0}$
 $1000 \times \begin{pmatrix} 0.2 & 0.9 \\ 0.8 & 0.1 \end{pmatrix}^{\frac{2}{5}} \begin{pmatrix} 0.2 & 0.9 \\ 0.3 \end{pmatrix}^{\frac{2}{5}} \begin{pmatrix} 1000 \\ 0.8 & 0.1 \end{pmatrix}^{\frac{2}{5}} \begin{pmatrix} 0.2 & 0.9 \\ 0.8 & 0.1 \end{pmatrix}^{\frac{2}{5}} \begin{pmatrix} 1000 \\ 3000 \end{pmatrix}^{\frac{2}{5}} = \begin{pmatrix} 515 & 36309 \\ 484 & 63691 \end{pmatrix} B^{\frac{1}{5}}_{\frac{1}{5}}$
 515 cats

Steady State & Long-term Probabilities

What is the steady state of a regular Markov chain?

- The vector **s** is said to be a **steady state** vector if it does not change when multiplied by the transition matrix
 - *T*s = s
- Regular Markov chains have steady states
 - A Markov chain is said to be regular if there exists a **positive integer** k such that **none of the** entries are equal to 0 in the matrix T^k
 - For this course all Markov chains will be regular
- The transition matrix for a regular Markov chain will have exactly one eigenvalue equal to 1 and the rest will all be less than 1
- As *n* gets bigger *T*ⁿ tends to a matrix where **each column is identical**
 - The column matrix formed by using one of these columns is called the steady state column matrix s
 - This means that the long-term probabilities tend to fixed probabilities
 - s_ntends to s

How do luse long-term probabilities to find the steady state?

- As **T** tends to a matrix whose columns equal the steady state vector
 - Calculate *T*ⁿ for a large value of *n* using your GDC
 - If the columns are identical when rounded to a required degree of accuracy then the column is the steady state vector
 - If the columns are not identical then choose a higher power and repeat

How do I find the exact steady state probabilities?

- As Ts = s the steady state vector s is the eigenvector of T corresponding to the eigenvalue equal to 1 whose elements sum to 1:
 - Let **s** have entries $x_1, x_2, ..., x_n$
 - Use Ts = s to form a system of linear equations

CopyrightThere will be an infinite number of solutions so choose a value for one of the unknowns

© 2024 Exam For example: let $x_n = 1$

- Ignoring the last equation solve the system of linear equations to find $x_1, x_2, ..., x_{n-1}$
- Divide each value x_i by the sum of the values
 - This makes the values add up to 1
- You might be asked to show this result using diagonalisation
 - Write *T* = *PDP*⁻¹ where *D* is the diagonal matrix of eigenvalues and *P* is the matrix of eigenvectors
 - Use *Tⁿ* = *PDⁿP*⁻¹
 - As *n* gets large **D**^{*n*} tends to a matrix where all entries are 0 apart from one entry of 1 due to the eigenvalue of 1
- Calculate the limit of *T*ⁿ which will have **identical columns**
 - You can calculate this by multiplying the three matrices (**P**, **D**[∞], **P**⁻¹) to gether

💽 Exam Tip

• If you calculate T^{∞} by hand then a quick check is to see if the columns are identical

• It should look like $\begin{pmatrix} a & a & a \\ b & b & b \\ c & c & c \end{pmatrix}$

Worked example

If a cat is brushed on a given day, then the probability it is brushed the following day is 0.2. If a cat is not brushed on a given day, then the probability that is will be brushed the following day is 0.9.

```
The transition matrix T is used to model this information with T = \begin{pmatrix} 0.2 & 0.9 \\ 0.8 & 0.1 \end{pmatrix}.

a) Find an eigenvector of T corresponding to the eigenvalue 1.

\underline{y} is an eigenvector of T with eigenvalue 1 if T\underline{y} = \underline{y}

|e^{\pm} \underline{y} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}

T\underline{y} = \begin{pmatrix} 0.2 & 0.9 \\ x_{1} \end{pmatrix} \begin{pmatrix} x_{1} \\ 0.8 & 0.1 \end{pmatrix} \begin{pmatrix} 0.2x_{1} + 0.9x_{2} \\ 0.8x_{1} + 0.1x_{2} \end{pmatrix}

T\underline{y} = \underbrace{y}_{1} & 0.2x_{1} + 0.9x_{2} = x_{1} \Rightarrow 0.9x_{2} = 0.8x_{1} \Rightarrow 9x_{2} = 8x_{1}

0.8x_{1} + 0.1x_{2} = x_{2} \Rightarrow 0.8x_{1} = 0.9x_{2} = 3x_{1} = 9x_{2}

Copyright

\odot 2024 Exam Papers Findelige solution x_{1} = 9 and x_{2} = 8

\begin{pmatrix} 9 \\ 8 \end{pmatrix} or any scalar multiple
```

```
b) Hence find the steady state vector.
```


Scale the elements so that they add to $\begin{bmatrix} \frac{q}{17} \\ \frac{8}{17} \end{bmatrix}$

The eigenvector corresponding to the eigenvalue I, whose elements add to I, is the steady state vector.

17 8 17

Page 10 of 10 For more help visit our website www.exampaperspractice.co.uk