EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

4.13 Transition Matrices \& Markov Chains

4.13.1 Markov Chains

Markov Chains

What is meant bya"state"?

- States refer to mutually exclusive events with the current event able to change over time
- Examples of states include:
- Dailyweatherconditions
- The states could be: "sunny" and "not sunny"
- Countries visited by an inspector each day
- The states could be:"France", "Spain" and "Germany"
- Store chosenforweeklygroceryshop:
- The states could be:"Foods-U-Like","Smiley Shoppers" and "BetterBuys"

What is a Markov chain?

- A Markov chain is a mo del that describes a sequence of states over a period of time
- Time is measured indiscrete steps
- Such as days, months, years,etc
- The conditions fora Markov chain are:
- The probability of a state being the next state in the sequence only depends on the current state
- Forexample

The $17^{\text {th }}$ state only depends on the $10^{\text {th }}$ state
The first 9 states do not affect the $17^{\text {th }}$ state

- This probability is called a transition probability
- The transition probabilities do not change over time
- Forexample

The probability that the $11^{\text {th }}$ state is A given that the $10^{\text {th }}$ state is B is equal to the probability that the $12^{\text {th }}$ state is A given that the $11^{\text {th }}$ state is B

- A Markov chain is said to be regular if it possible to reach any state after a finite perio d of time regardless of the initial state

What is a transition state diagram?

- A transition diagram is a directed graph
- The vertices are the states
- The edges represent the transition probabilities between the states
- The graph can contain
- Loops
- These will be the transition probabilities of the next state being the same as the current state
- Two edges between each pair of vertices
- The edges will be in opposite directions
- Each edge will show the transition probability of the state changing in the given direction
- The probabilities on the edges coming out of avertexaddup to 1

- ExamTip

- Drawing a transition state diagram(even when the question does not ask forone) can help you visualise the problem

Worked example

Fleur travels to work by car, bike orbus. Each dayshe chooses hermode of transport based on the transport she chose the previous day.

- If Fleur travels by car then there is a 40% chance that she will travel by car the follo wing day and a 10% chance that she will travel by bike.
- If Fleur travels by bike then there is a 60\% chance that she will travel by bike the following day and a 25% chance that she will travel by bus.
- If Fleur travels by bus then there is an 80% chance that she will travel by bike the following day and a 20% chance that she will travel by car.
Represent this information as a transition state diagram.

4.13.2 Transition Matrices

Transition Matrices

What is a transition matrix?

- Atransition matrix T shows the transition probabilities between the current state and the next state
- The columns represent the current states
- The rows represent the next states
- The element of T in the $t^{\text {th }}$ row and $j^{\text {th }}$ column gives the transition pro bability $t_{i j}$ of:
- the next state being the state corresponding to row \boldsymbol{i}
- given that the current state is the state corresponding to column j
- The probabilities in each column must add up to 1
- The transition matrix depends on how you assign the states to the columns
- Each transition matrixfora Markov chain will contain the same elements
- The rows and columns maybe in different orders though
- E.g. Sunny (S) \& Cloudy (C) could be in the order Sthen C or C then S

What is an initial state probability matrix?

- An initial state probability matrix so is a column vector which contains the probabilities of each state being chosen as the initial state
- If you know which state was chosen as the initial state then that entry will be land the others will all be zero
- Youcan find the state probability matrix s_{1} which contains the probabilities of each state being chosen after one int erval of time
- $\mathrm{s}_{1}=T \mathrm{~s}_{0}$

How do lfind expected values after one int erval of time?

- Suppose the Markovchange represents a population moving between states
- Examples include:
- People in a town switching gyms each year
- Children choosing a type of sand wich for their lunch each day
- Suppose the total population is fixed and equals N
- Youcan multiply the state probability matrix \mathbf{s}_{1} by N to find the expected number of members of the population at each state

- Exam Tip

- If you are asked to find a transition matrix, check that all the pro babilities within a column add up to 1
- Drawing a transition state diagram can help you to visualise the problem

Worked example

Each year Jamie donates to one of three charities: A, B or C. At the start of each year, the pro babilities of Jamie continuing donate to the same charity or changing charities are represented by the following transition state diagram:

a) Write down a transition matrix \boldsymbol{T} for this system of probabilities.

b) There is a 10% chance that charity A is the first charitythat Jamie chooses, a 10% chance for charity B and an 80% chance for charity C. Find the charity which has the highest
probability of being picked as the second charity after the first year.

$$
\begin{array}{ll}
\text { Write down the initial state vector } \quad S_{0}=\left(\begin{array}{l}
0.1 \\
0.1 \\
0.8
\end{array}\right) \\
S_{1}=T_{S_{0}} & S_{1}=\left(\begin{array}{lll}
0.5 & 0.2 & 0.6 \\
0.2 & 0.7 & 0.4 \\
0.3 & 0.1 & 0
\end{array}\right)\left(\begin{array}{l}
0.1 \\
0.1 \\
0.8
\end{array}\right)=\left(\begin{array}{l}
0.55 \\
0.41 \\
0.04
\end{array}\right)
\end{array}
$$

Charity A has the highest probability of being the second charity picked.

Exam Papers Practice
© 2024 Exam Papers Practice

Powers of Transition Matrices

Howdo Ifind powers of a transition matrix?

- You can simply use your GDC to find given powers of a matrix
- The power could be left interms of an unknown n
- In this case it would be more helpful to write the transition matrix in diagonalis ed form (see section 1.8.2 Applications of Matrices) $\boldsymbol{T}=P D P^{-1}$ where
- D is a diagonal matrix of the eigenvalues
- Pis a matrix of corresponding eigenvectors
- Then $\boldsymbol{T}^{n}=\boldsymbol{P D}^{\boldsymbol{n}} \boldsymbol{P}^{-1}$
- This is given in the formula booklet
- Every transition matrix always has an eigenvalue equal to 1

What is represented bythe powers of a transition matrix?

- The powers of a transition matrix also represent probabilities
- The element of T^{n} in the $i^{t h}$ row and $j^{\text {th }}$ column gives the probability $t^{n}{ }_{i j}$ of:
- the future state after \boldsymbol{n} intervals of time being the state corresponding to row \boldsymbol{i}
- given that the current state is the state corresponding to columnj
- For example: Let \boldsymbol{T} be a transition matrix with the element $t_{2,3}$ repres enting the probability that to mo rrow is sunny given that it is raining to day
- The element $t^{5}{ }_{2,3}$ of the matrix T^{5} represents the probability that it is sunny in 5 days' time given that it is raining to day
- The probabilities in each column must still add up to 1

Howdolfind the column statematrices?

- The column state matrix $\boldsymbol{s}_{\boldsymbol{n}}$ is a column vectorwhich contains the probabilities of each state being cho sen after nintervals of time given the current state
Copyright - $\mathbf{s}_{\mathbf{n}}$ depends onso
- To calculate the column state matrix yo u raise the transition matrix to the power nand multiply by the initial state matrix
- $\boldsymbol{T}^{n} \boldsymbol{S}_{0}=\boldsymbol{S}_{n}$
- You are given this in the formula booklet
- You can multiply $\mathbf{s}_{\boldsymbol{n}}$ by the fixed populationsize to find the expected number of members of the population at each state after n intervals of time

Worked example

At a cat sanctuary there are 1000 cats. If a cat is brushed on a given day, then the probability it is brushed the following day is 0.2 . If a cat is not brushed on a given day, then the probability that is will be brushed the following day is 0.9 .

The transition matrix \boldsymbol{T} is used to mo del this information with $\boldsymbol{T}=\left(\begin{array}{cc}0.2 & 0.9 \\ 0.8 & 0.1\end{array}\right)$.
a) On Monday Hippo the cat is brushed. Find the probability that Hippo will be brushed on Friday.
Identify the states with the rows/olums
Current

$$
\begin{aligned}
& B\left(\begin{array}{cc}
B & B^{\prime} \\
0.2 & 0.9 \\
0.8 & 0.1
\end{array}\right) \\
& \text { Friday is }^{2} \text { days after Monday }
\end{aligned}
$$

$$
\left.T^{4}=\left(\begin{array}{ll}
0.2 & 0.9 \\
0.8 & 0.1
\end{array}\right)^{4}=\left(\begin{array}{ll}
0.6424 & 0.4023 \\
0.3576 & 0.5977
\end{array}\right)^{B} B^{\prime}\right\} \text { Future }
$$

© 2024 Exam Papers Practice
b) On Monday 700 cats were brushed. Find the expected number of cats that will be brushed on the following Monday.

On Monday 700 brushed $\quad s_{0}=\binom{0.7}{0.3}$
Expected numbers after 7 days
Total $\times S_{7}=$ Total $\times T^{7} S_{0}$

$$
1000 \times\left(\begin{array}{ll}
0.2 & 0.9 \\
0.8 & 0.1
\end{array}\right)^{7}\binom{0.7}{0.3}=\left(\begin{array}{ll}
0.2 & 0.9 \\
0.8 & 0.1
\end{array}\right)^{7}\binom{700}{300}=\binom{515.36309}{484.63691}{ }_{B^{\prime}}^{B}
$$

515 cats

Steady State \& Long-term Probabilities

What is the steady state of a regular Markov chain?

- The vectors is said to be a steady state vectorif it does not change when multiplied by the transition matrix
- Ts = s
- Regular Markov chains have steadystates
- A Markov chain is said to be regularif there exists a positive int eger \boldsymbol{k} such that no ne of the entries are equal to 0 in the matrix T^{k}
- For this course all Markov chains will be regular
- The transition matrix for a regular Markov chain will have exactly one eigenvalue equal to land the rest will all be less than 1
- As ngets bigger T^{n} tends to a matrix where each columnis identical
- The column matrix formed byusing one of these columns is called the steadystate column matrix s
- This means that the long-term probabilities tend to fixed probabilities
- \mathbf{s}_{n} tends to \mathbf{s}

How do luse long-term probabilities to find the steadystate?

- As T^{n} tends to a matrix who se columns equal the steadystate vector
- Calculate T^{n} for a large value of n using your GDC
- If the columns are identical when rounded to a required degree of accuracy then the column is the steadystate vector
- If the columns are not identical then cho ose a higherpower and repeat

Howdo Ifind the exact steadystate probabilities?

- As $\boldsymbol{T s}=\mathbf{s}$ the steadystate vectors is the eigenvector of \boldsymbol{T} corresponding to the eigenvalue equal to 1 whose elements sum to 1 :
- Let s have entries $x_{1}, x_{2}, \ldots, x_{n}$
- Use Ts = s to form a system of linear equations
- There will be an infinite number of solutions so choose a value for one of the unknowns
(c) 2024 Ex For example: let $x_{n}=1$
- Ignoring the last equation solve the system of linear equations to find $x_{1}, x_{2}, \ldots, x_{n-1}$
- Divide each value x_{i} by the sum of the values
- This makes the values add up to 1
- You might be asked to show this result using diago nalisation
- Write $T=P D P^{-1}$ where D is the diagonal matrix of eigenvalues and P is the matrix of eigenvectors
- Use $T^{n}=P D^{n} P^{-1}$
- As n gets large D^{n} tends to a matrix where all entries are 0 apart from one entry of 1 due to the eigenvalue of 1
- Calculate the limit of T^{n} which will have identical columns
- You can calculate this by multiplying the three matrices $\left(P, D^{\infty}, P^{-l}\right)$ to gether

- Exam Tip

- If you calculate T^{∞} by hand then a quick check is to see if the columns are identical
- It should look like $\left(\begin{array}{lll}a & a & a \\ b & b & b \\ c & c & c\end{array}\right)$

Worked example

If a cat is brushed on a given day, then the probability it is brushed the following day is 0.2 . If a cat is not brushed on a given day, then the probability that is will be brushed the following day is 0.9.

The transition matrix \boldsymbol{T} is used to mo del this information with $\boldsymbol{T}=\left(\begin{array}{cc}0.2 & 0.9 \\ 0.8 & 0.1\end{array}\right)$.
a) Find an eigenvector of \boldsymbol{T} corresponding to the eigenvalue 1.
\underline{v} is an eigenvector of T with eigenvalue \mid if $T_{\underline{v}}=\underline{v}$
Let $\underline{v}=\binom{x_{1}}{x_{2}}$
$T_{\underline{v}}=\left(\begin{array}{ll}0.2 & 0.9 \\ 0.8 & 0.1\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0.2 x_{1}+0.9 x_{2}}{0.8 x_{1}+0.1 x_{2}}$
$\square \begin{aligned} & T_{\underline{v}}=\underline{v} 0.2 x_{1}+0.9 x_{2}=x_{1} \Rightarrow 0.9 x_{2}=0.8 x_{1} \Rightarrow 9 x_{2}=8 x_{1} \\ & 0.8 x_{1}+0.1 x_{2}=x_{2} \Rightarrow 0.8 x_{1}=0.9 x_{2} \Rightarrow 8 x_{1}=9 x_{2}\end{aligned}$
Copyright
Find at ia solution $x_{1}=9$ and $x_{2}=8$
$\binom{9}{8}$ or any scalar multiple
b) Hence find the steadystate vector.

Exam Papers Practice

Scale the elements so that they add to $1\binom{\frac{9}{17}}{\frac{8}{17}}$
The eigenvector corresponding to the eigenvalue 1 , whose elements add to I, is the steady state vector.
$\binom{\frac{9}{17}}{\frac{8}{17}}$

Exam Papers Practice
© 2024 Exam Papers Practice

