EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

4.12 Further Hypothesis Testing

4.12.1 Hypothe sis Testing for Mean (One Sample)

One-Sample z-tests

What is a one-samplez-test?

- A one-sample z-test is used to test the mean (μ) of a normally distributed population
- You use a z-test when the population variance (σ^{2}) is known
- The mean of a sample of size n is calculated \bar{X} and a normal distribution is used to test the test statistic
- \bar{X} can be used as the test statistic
- In this case you would use the distribution $\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma^{2}}{n}\right)$
- Remember when using this distribution that the stand ard deviation is $\frac{\sigma}{\sqrt{n}}$
- $Z=\frac{\bar{X}-\mu}{\frac{\sigma}{r a}}$ can be used as the test statistic
$\overline{\sqrt{n}}$
- In this case you would use the distribution $Z \sim \mathrm{~N}\left(0,1^{2}\right)$
- This is a more old-fashioned approach but your GDC still might tell you the z-value when youdo the test
- You will not need to use this method in the exam as your GDC should be capable of doing the othermethod

What are the steps for performing a one-sample z-test on my GDC?

- STEP 1:Write the hypotheses
- $\mathrm{H}_{0}: \mu=\mu_{0}$
- Clearlystate that μ represents the population mean
- μ_{0} is the assumed population mean
- Foraone-tailed test $H_{1}: \mu<\mu_{0}$ or $H_{1}: \mu>\mu_{0}$
- Foratwo-tailed test: $H_{1}: \mu \neq \mu_{0}$
- The alternative hypothes is will depend on what is being tested
- STEP 2: Enter the data into your GDC and choose the one-sample z-test
- If you have the raw data
- Enterthe data as a list
- Enterthe value of σ
- If you have summarystatistics
- Enterthe values of $\overline{\boldsymbol{X}}, \sigma$ and n
- Your GDC will give you the p-value
- STEP 3: Decide whether there is evidence to reject the null hypothesis
- If the p-value < significance levelthen reject H_{0}
- STEP 4: Write your conclusion
- If you reject H_{0} then there is evidence to suggest that...
- The mean has decreased (for $\mathrm{H}_{1}: \mu<\mu_{\mathrm{O}}$)
- The mean has increased (for $\mathrm{H}_{1}: \mu>\mu_{0}$)
- The mean has changed (for $\mathrm{H}_{1}: \mu \neq \mu_{0}$)
- If you accept H_{0} then there is insufficient evidence to reject the null hypothesis which suggests that...
- The mean has not decreased (for $\mathrm{H}_{1}: \mu<\mu_{\mathrm{O}}$)
- The mean has not increased (for $\mathrm{H}_{1}: \mu>\mu_{0}$)
- The mean has not changed (for $\mathrm{H}_{1}: \mu \neq \mu_{0}$)

How do Ifind the p-value for a one-sample z-test using a normal distribution?

- The p-value is determined by the test statistic \bar{X}
- For $H_{1}: \mu<\mu_{0}$ the p-value is $\mathrm{P}\left(\bar{X}<\bar{X} \mid \mu=\mu_{0}\right)$
- For $\mathrm{H}_{1}: \mu>\mu_{0}$ the p-value is $\mathrm{P}\left(\bar{X}>\bar{X} \mid \mu=\mu_{0}\right)$
- For $H_{1}: \mu \neq \mu_{0}$ the p-value is $\mathrm{P}\left(\left|\bar{X}-\mu_{0}\right|>\left|X-\mu_{0}\right| \mid \mu=\mu_{0}\right)$
- If $\bar{X}<\mu_{0}$ then this can be calculated easier by $2 \times \mathrm{P}\left(\bar{X}<\bar{X} \mid \mu=\mu_{0}\right)$
- If $\bar{X}>\mu_{0}$ then this can be calculated easier by $2 \times \mathrm{P}\left(\bar{X}>\bar{X} \mid \mu=\mu_{0}\right)$

How do I find the critical value and critical region for a one-samplez-test?

2 The critical region is determined bythe significance level $\alpha \%$

- For $H_{1}: \mu<\mu_{0}$ the critical region is $\bar{X}<c$ where $\mathrm{P}\left(\bar{X}<c \mid \mu=\mu_{0}\right)=\alpha \%$
- For $\mathrm{H}_{1}: \mu>\mu_{0}$ the critical region is $\bar{X}>c$ where $\mathrm{P}\left(\bar{X}>c \mid \mu=\mu_{0}\right)=\alpha \%$
- For $H_{1}: \mu \neq \mu_{0}$ the critical regions are $\bar{X}<c_{1}$ and $\bar{X}>c_{2}$ where

$$
\mathrm{P}\left(\bar{X}<c_{1} \mid \mu=\mu_{0}\right)=\mathrm{P}\left(\bar{X}>c_{2} \mid \mu=\mu_{0}\right)=\frac{1}{2} \alpha \%
$$

- The critical value(s) can be found using the inverse no rmal distribution function
- When rounding the critical value(s) you should choose:
- The lower bound for the inequalities $\bar{X}<c$
- The upper bound forthe inequalities $\bar{X}>c$
- This is so that the probability does not exceed the significance level

- Exam Tip

- Exam questions might specify a method foryou to use so practise all metho ds (using GDC, p-values, critical regions)
- If the exam question does not specify a method then use whichevermethod you want
- Make it clear which method you are using
- Youcan always use a second method as a way of checking your answer

Exam Papers Practice
© 2024 Exam Papers Practice

Worked example

The mass of a Burmese cat, C, follows a normal distribution with mean 4.2 kg and a standard deviation 1.3 kg . Kamala, a cat breeder, claims that Burmese cats weigh more than the average if they live in a household which contains young children. To test her claim, Kamala takes a random sample of 25 cats that live in households containing young children.
a) State the null and alternative hypotheses to test Kamala's claim.

Let μ be the population mean for the mass of
Burmese cats

$$
\begin{aligned}
& H_{0}: \mu=4.2 \\
& H_{1}: \mu>4.2
\end{aligned} \text { Testing for an increase }
$$

b) Using a 5\% level of significance, find the critical region for this test.

The population variance is known so use a 2 -test

$$
\text { Find the distribution of the sample means } N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

$\bar{C} \sim N\left(\mu, \frac{1.3^{2}}{25}\right) \quad$ Square the standard deviation The sample size
Critical region is $\bar{c}>c$ where $P(\bar{c}>c \mid \mu=4.2)=0.05$ Use inverse normal:

$c=4.6276 \ldots$

$$
\text { Critical region } \bar{C}>4.63
$$

c) Kamala calculates the mean of the 25 cats included in her sample to be 4.65 kg . Determine the conclusion of the test.
$4.65>4.6276$... so 4.65 is in critical region
Reject H_{0} as test statistic is in critical region.
There is sufficient evidence to suggest that Burmese cats weigh more if they live in a household which contains young children.

One-Sample t-tests

What is a one-sample t-test?

- A one-sample t-test is used to test the mean (μ) of a normally distributed population
- You use a t-test when the population variance (σ^{2}) is unknown
- Youneed to use the unbiased estimate for the population variance $\left(S_{n-1}^{2}\right)$
- The mean of a sample of size n is calculated \bar{X} and a t-distribution is used to test it
- t-distributions are similar to no rmal distributions
- As the sample size gets larger the t-distribution tends to wards the stand ard normal distribution
- Youwon't be expected to find the critical value
- The p-value can be found using the test function on yo ur GDC

What are the steps forperforming a one-sample t-test on my GDC?

- STEP 1:Write the hypotheses
- $H_{0}: \mu=\mu_{0}$
- Clearlystate that μ represents the population mean
- μ_{O} is the assumed population mean
- Fora one-tailed test $\mathrm{H}_{1}: \mu<\mu_{0}$ or $\mathrm{H}_{1}: \mu>\mu_{0}$
- Foratwo-tailed test: $\mathrm{H}_{1}: \mu \neq \mu_{0}$
- The alternative hypothes is will depend on what is being tested
- STEP 2: Enter the data into your GDC and choose the one-sample t-test
- If you have the raw data
- Enterthe data as a list
- If you have summary statistics
- Enter the values of $\overline{\boldsymbol{X}}, s_{n-7}$ (sometimes written as $s_{x} \circ$ n a GDC) and n
- Your GDC will give you the p-value

2 STEP 3: Decide whether there is evidence to reject the null hypothesis

- If the p-value < significance level then reject H_{0}
- STEP 4: Write your conclusion
- If you reject H_{0} then there is evidence to suggest that...
- The meanhas decreased (for $\mathrm{H}_{1}: \mu<\mu_{0}$)
- The mean has increased (for $\mathrm{H}_{1}: \mu>\mu_{0}$)
- The mean has changed (for $\mathrm{H}_{1}: \mu \neq \mu_{0}$)
- If you accept H_{0} then there is insufficient evidence to reject the null hypothesis which suggests that...
- The meanhas not decreased (for $\mathrm{H}_{1}: \mu<\mu_{\mathrm{O}}$)
- The mean has not increased (for $\mathrm{H}_{1}: \mu>\mu_{0}$)
- The mean has not changed (for $\mathrm{H}_{1}: \mu \neq \mu_{0}$)

Worked example

The IQ of a student at Calculus High can be modelled as a normal dis tribution with mean 126. The headteacherdecides to playclassical music during lunchtimes and suspects that this has caused a change in the average IQ of the students.
a) State the null and alternative hypotheses to test the headteacher's suspicion.

Let μ be the population mean for the IQ of a student at Calculus High

$$
\begin{aligned}
& H_{0}: \mu=126 \\
& H_{1}: \mu \neq 126
\end{aligned} \text { Testing for a change }
$$

b) The headteacher selects 15 students and asks them to complete an IQ test. The mean score for the sample is 127.1 and the sample variance is 14.7. Calculate the unbiased estimate for the po pulation variance S_{n-1}^{2}

Formula booklet \quad| $\begin{array}{l}\text { Unbiased estimate of } \\ \text { population variance } s_{n-1}^{2}\end{array}$ | $s_{n-1}^{2}=\frac{n}{n-1} s_{n}^{2}$ |
| :--- | :--- |

$$
s_{n-1}^{2}=\frac{15}{14} \times 14.7
$$

$$
S_{n-1}^{2}=15.75
$$

c) Calculate the p-value for the test.

$$
\begin{aligned}
& \bar{x}=127.1 \quad s_{n-1}=\sqrt{15.75} \quad n=15 \\
& p=0.3012 \ldots \\
& p=0.301 \quad(3 \mathrm{sf})
\end{aligned}
$$

d) State whether the headteacher's suspicion is supported by the test.
$0.3012 \ldots>0.1$
Accept H_{0} as p-value > significance level. There is insufficient evidence to support the headteacher's suspicion.

4.12.2 Hypothesis Testing for Mean (Two Sample)

Two-Sample Tests

What is a two-sampletest?

- A two-sample test is used to compare the means ($\mu_{1} \& \mu_{2}$) of two normally distributed populations
- You use a z-test when the population variances ($\sigma_{1}^{2} \& \sigma_{2}^{2}$) are known
- You use a t-test when the population variances are unkno wn
- In this course you will assume the variances are equal and use a pooled sample for a t test
- In a pooled sample the data from both samples are used to estimate the po pulation variance

What are the steps for performing a two -sample test on my GDC?

- STEP 1: Write the hypotheses
- $\mathrm{H}_{0}: \mu_{7}=\mu_{2}$
- Clearlystate that $\mu_{7} \& \mu_{2}$ represent the population means
- Make sure you make it clear which mean corresponds to which population
- In words this means that the two population means are equal
- Fora one-tailed test $H_{1}: \mu_{7}<\mu_{2}$ or $H_{1}: \mu_{7}>\mu_{2}$
- Foratwo-tailed test: $H_{1}: \mu_{7} \neq \mu_{2}$
- The alternative hypothes is will depend on what is being tested
- STEP 2: Decide if it is a z-test or a \boldsymbol{t}-test
- If the po pulations variances are known then use az-test

Gnt the po pulations variances are unkno wn then use a t-test

- Assume the variances are equal and use a pooled sample
- STEP 3: Enter the data into your GDC and choose two-sample z-test or two-sample t-test
- If you have the raw data
- Enterthe data as a list
- Enterthe values of $\sigma_{1} \& \sigma_{2}$ if a z-test
- Choose the pooled option if a t-test
- If you have summarystatistics (only foraz-test)
- Enterthe values of $\bar{X}_{1}, \bar{X}_{2}, \sigma_{1}, \sigma_{2}, n_{1} \& n_{2}$
- Your GDC will give you the p-value
- STEP 4: Decide whether there is evidence to reject the null hypo thesis
- If the p-value < significance level then reject H_{0}
- STEP 5: Write your conclusion
- If youreject H_{0} then there is evidence to suggest that...
- The mean of the ${ }^{5 \text { st }}$ population is smaller $\left(\right.$ for $\left.\mathrm{H}_{1}: \mu_{7}<\mu_{2}\right)$
- The mean of the $7^{\text {st }}$ population is bigger (for $\mathrm{H}_{1}: \mu_{7}>\mu_{2}$)
- The means of the two po pulations are different (for $\mathrm{H}_{1}: \mu_{7} \neq \mu_{2}$)
- If you accept H_{0} then there is insufficient evidence to reject the null hypo thesis which suggests that...
- The mean of the ${ }^{\text {st }}$ population is not smaller $\left(\right.$ for $\left.\mathrm{H}_{1}: \mu_{7}<\mu_{2}\right)$
- The mean of the $1^{\text {st }}$ population is not bigger $\left(\right.$ for $\left.\mathrm{H}_{1}: \mu_{7}>\mu_{2}\right)$
- The means of the two po pulations are not different (for $\left.\mathrm{H}_{1}: \mu_{7} \neq \mu_{2}\right)$

Worked example

The times (in minutes) for children and adults to complete a puzzle are recorded below.

The creator of the puzzle claims children are generallyfaster at solving the puzzle than adults. A t test is to be performed at a 1% significance level.
a) Write down the null and alternative hypotheses.

Let μ_{c} be the population mean for children's times
and μ_{A} be the population mean for adults' times

Copyright

b) Find the p-value for this test.

Enter the data as two lists in GDC Use 2 -sample pooled t-test $p=0.007259 \ldots$

$$
p=0.00726 \quad(3 \mathrm{sf})
$$

c) State whether the creator's claim is supported by the test. Give a reason for yo ur answer.

Exam Papers Practice
$0.00726<0.01$
Reject H_{0} as p-value < significance level. There is sufficient evidence to suggest that children are generally faster at solving the puzzle than adults. This supports the creator's claim.

Paired t-tests

What is a paired \boldsymbol{t}-test?

- A paired test is where you take two samples but each data point from one sample can be paired with a dat a point from the other sample
- These are used when one group of members are used twice and the two results for each member are paired
- It could be to compare the sample before and after intro ducing a new factor
- It could be to compare the sample under two different conditions
- For this test you use the differences between the pairs and treat them as one sample
- As the variance of the differences is unlikely to be known you will use a t-test
- For a paired test you need to assume the differences are normally dis tribute
- You don't need to assume the populations are no rmally distributed

What are the steps for performing a paired t-test on my GDC?

- STEP 1: Write the hypotheses
- $H_{0}: \mu_{D}=0$
- Clearly state that μ_{D} represents the population mean of the differences
- In words this means the population mean has not changed
- Fora one-tailed test $\mathrm{H}_{1}: \mu_{D}<\mathrm{O}$ or $\mathrm{H}_{1}: \mu_{D}>0$
- Foratwo-tailed test: $\mathrm{H}_{1}: \mu_{D} \neq 0$
- The alternative hypothesis will depend on what is being tested
- STEP 2: Enter the data into your GDC and choo se the one-sample t-test
- Enter the differences as a list
- Be consistent with the order in which you subtract paired values
- Your GDC will give you the p-value
- STEP 3: Decide whether there is evidence to reject the null hypothesis
- If the p-value < significance level then reject H_{0}
- STEP 4: Write your conclusion
- If you reject H_{0} then there is evidence to suggest that...
- The meanhas decreased (for $\mathrm{H}_{1}: \mu_{D}<0$)
- The mean has increased (for $\mathrm{H}_{1}: \mu_{D}>0$)
- The mean has changed (for $H_{1}: \mu_{D} \neq 0$)
- If you accept H_{0} then there is insufficient evidence to reject the null which suggests that...
- The mean has not decreased (for $\mathrm{H}_{1}: \mu_{D}<0$)
- The mean has not increased (for $\left.H_{1}: \mu_{D}>0\right)$
- The mean has not changed (for $\mathrm{H}_{1}: \mu_{D} \neq 0$)

Exam Papers Practice

O Exam Tip

- If an exam question has two samples with the same number of members then consider carefullywhetherit makes sense to do a paired test or a two sample test
- The examiner might make it look like it is a paired test to trick you!

Worked example

In a school all students must study French and Spanish. 9 students are selected and complete a test in both subjects, the stand ardised scores are shown below

Student	1	2	3	4	5	6	7	8	9
French score	61	82	77	80	99	69	75	71	81
Spanish score	74	79	83	66	95	79	82	81	85

The headteacher wants to investigate whether there is a difference in the students' scores between the two subjects. A paired t-test is to be performed at a 10% significance level.
a) Write down the null and alternative hypotheses.

Let D be the French score minus the Spanish score for the students. Let μ_{D} be the mean difference for the whole population of students.
Copyright
(C) 2024 Exam Papers
$H_{0}: c \rho \mu_{0}=0$
$H_{1}: \mu \geqslant 0$ Testing for a difference in scores
b) Find the p-value for this test.

Exam Papers Practice

Calculate the difference for each student $d=$ French - Spanish

Student	1	2	3	4	5	6	7	8	9
d	-13	3	-6	14	4	-10	-7	-10	-4

Enter the differences into the $G D C$ and use a t-test $p=0.2958 \ldots$ $p=0.296(3 s f)$
c) Write down the conclusion to the test. Give a reason foryour answer.

$$
0.2958 . .>0.1
$$

Accept H_{0} as p-value > significance level
There is insufficient evidence to suggest that there is a difference in scores.

Exam Papers Practice
© 2024 Exam Papers Practice

4.12.3 Binomial Hypothesis Testing

Binomial Hypothesis Testing

What is a hypothesis test using a binomial distribution?

- Youcan use abinomial distribution to test whether the proportion of a population with a specified characteristic has increased ordecreased
- These tests will always be one-tailed
- You will not be expected to perform a two-tailed hypo thesis test with the binomial distribution
- A sample will be taken and the test statistic x will be the number of members with the characteristic which will be tested using the dis tribution $X \sim \mathrm{~B}(n, p)$
- This can be thought of as the number of successes

What are the steps for a hypothesis test of a binomial proportion?

- STEP 1:Write the hypotheses
- $H_{0}: p=p_{0}$
- Clearlystate that prepresents the population proportion
- p_{0} is the assumed population proportion
- $H_{1}: p<p_{0}$ or $H_{1}: p>p_{0}$
- STEP 2: Calculate the \boldsymbol{p}-value orfind the critical region
- Seebelow
- STEP 3: Decide whether there is evidence to reject the null hypothesis
- If the p-value < significance level then reject H_{0}
- If the test statistic is in the critical region then reject H_{0}
- STEP 4: Write your conclusion
- If you reject H_{0} then there is evidence to suggest that...
- The population pro portion has decreased (for $\left.\mathrm{H}_{1}: p<p_{0}\right)$
- The population proportion has increased (for $\mathrm{H}_{1}: p>p_{0}$)
- If you accept H_{0} then there is insufficient evidence to reject the null hypothesis which suggests that...
- The population proportion has not decreased (for $\left.H_{1}: p<p_{0}\right)$
- The population proportion has not increased (for $\mathrm{H}_{1}: p>p_{0}$)

Howdolcalculate the p-value?

- The p-value is determined by the test statistic x
- The p-value is the probability that 'a value being at least as extreme as the test statistic' would occur if null hypothesis were true
- For $\mathrm{H}_{1}: p<p_{0}$ the p-value is $\mathrm{P}\left(X \leq X \mid p=p_{0}\right)$
- For $\mathrm{H}_{1}: p>p_{0}$ the p-value is $\mathrm{P}\left(X \geq x \mid p=p_{0}\right)$

Howdo Ifind the critical value and critical region?

- The critical value and critical region are determined by the significance level $a \%$
- Your calculatormight have an inverse binomial function that works just like the inverse normal function
- You need to use this value to find the critical value
- The value given by the inverse binomial function is normally one away from the actual critical value
- For $\mathrm{H}_{1}: p<p_{0}$ the critical region is $X \leq c$ where c is the critical value
- cis the largest integer such that $\mathrm{P}\left(X \leq c \mid p=p_{0}\right) \leq \alpha \%$
- Check that $\mathrm{P}\left(X \leq c+1 \mid p=p_{0}\right)>\alpha \%$
- For $\mathrm{H}_{1}: p>p_{0}$ the critical region is $X \geq c$ where c is the critical value
- cis the smallest integer such that $\mathrm{P}\left(X \geq c \mid p=p_{0}\right) \leq \alpha \%$
- Check that $\mathrm{P}\left(X \geq c-1 \mid p=p_{0}\right)>\alpha \%$

Exam Papers Practice
Copyright
© 2024 Exam Papers Practice

Worked example

The existing treatment for a disease is known to be effective in 85% of cases. Dr Sabin develops a new treatment which she claims is more effective than the existing one. To test her claim she uses the new treatment on a random sample of 60 patients with the disease and finds that the treatment was effective for 57 of them.
a) State null and alternative hypotheses to test Dr Sabin's claim.

Let p be the proportion of the population for which the new treatment is effective.

$$
\begin{aligned}
& H_{0}: p=0.85 \\
& H_{1}: p>0.85
\end{aligned} \text { Testing for an increase }
$$

b) Perform the test using a 1% significance level. Clearly state the conclusion in context.

Let $X \sim B(60, p)$ be the number of people in the sample for which the new treatment is effective

Find the p-value and compare to the significance level $p=P\left(X \geqslant\left. 57\right|_{p}=0.85\right)=0.01483 \ldots>0.01$

Accept H_{0} as p-value > significance level There is insufficient evidence to suggest that the new treatment is more effective than the existing treatment.

4.12.4 Poisson Hypothesis Testing

Poisson Hypothesis Testing

What is a hypothesis test using a Poisson distribution?

- Youcan use a Pois son distribution to test whether the mean number of occurrences fora given time period within a po pulation has increased ordecreased
- These tests will always be one-tailed
- You will not be expected to perform a two-tailed hypothesis test with the Pois son distribution
- A sample will be taken and the test statistic x will be the number of occurrences which will be tested using the distribution $X \sim \operatorname{Po}(m)$

What are the steps for a hypothesis test of a Poisson proportion?

- STEP 1: Write the hypotheses
- $\mathrm{H}_{0}: m=m_{0}$
- Clearlystate that m represents the mean number of occurrences for the giventime period
- m_{O} is the assumed mean number of occurrences
- You might have to use proportionto find m_{0}
- $\mathrm{H}_{1}: m<m_{0}$ or $\mathrm{H}_{1}: m>m_{0}$
- STEP 2: Calculate the \boldsymbol{p}-value orfind the critical region
- Seebelow
- STEP 3: Decide whether there is evidence to reject the null hypothesis
- If the p-value < signific ance level then reject H_{0}
- If the test statistic is in the critical region then reject H_{0}
- STEP 4: Write your conclusion
- If you reject H_{0} then there is evidence to suggest that...
- The mean number of occurrences has decreased (for $\mathrm{H}_{1}: m<m_{0}$)
- The mean number of occurrences has increased (for $\mathrm{H}_{1}: m>m_{0}$)
- If you accept H_{0} then there is insufficient evidence to reject the null hypothesis which suggests that...
- The mean number of occurrences has not decreased (for $\mathrm{H}_{1}: m<m_{0}$)
- The mean number of occurrences has not increased (for $\mathrm{H}_{1}: m>m_{0}$)

How do lcalculate the p-value?

- The p-value is determined by the test statistic x
- The p-value is the probability that 'a value being at least as extreme as the test statistic' would occur if null hyp othesis were true
- For $H_{1}: m<m_{0}$ the p-value is $\mathrm{P}\left(X \leq X \mid m=m_{0}\right)$
- For $H_{1}: m>m_{0}$ the p-value is $\mathrm{P}\left(X \geq X \mid m=m_{0}\right)$

How do lfind the critical value and critical region?

- The critical value and critical region are determined by the significance level $a \%$
- Your calculator might have an inverse Poisson function that works just like the inverse normal function
- You need to use this value to find the critic al value
- The value given by the inverse Poiss on function is normally one away from the actual critical value
- For $\mathrm{H}_{1}: m<m_{0}$ the critical region is $X \leq c$ where c is the critic al value
- c is the largest integer such that $\mathrm{P}\left(X \leq c \mid m=m_{0}\right) \leq \alpha \%$
- Check that $\mathrm{P}\left(X \leq c+1 \mid m=m_{0}\right)>\alpha \%$
- For $\mathrm{H}_{1}: m>m_{0}$ the critical region is $X \geq c$ where c is the critic al value
- c is the smallest integer such that $\mathrm{P}\left(X \geq c \mid m=m_{0}\right) \leq \alpha \%$
- Check that $\mathrm{P}\left(X \geq c-1 \mid m=m_{0}\right)>\alpha \%$

- Exam Tip

- In an exam it is very important to state the time period for yo ur variable
- Make sure the mean used in the null hypothesis is for the stated time period

. Worked example

The owner of a website claims that his website receives an average of 120 hits per hour. An interested purchaser believes the website receives on average fewer hits than they claim. The owner chooses a 10-minute period and observes that the website receives 11 hits . It is as sumed that the number of hits the website receives in any given time period follows a Poisson Distribution.
a) State null and alternative hypotheses to test the purchaser's claim.

Let m be the mean number of hits in a 10 -minute period
120 hits in an hour $\Rightarrow 20$ hits in a 10 -minute period

$$
\begin{aligned}
& H_{0}: m=20 \\
& H_{1}: m<20
\end{aligned} \text { Testing for fewer hits }
$$

b) Find the critical region for a hypo thesis test at the 5% significance level.

Let $X \sim P_{0}(m)$ be the number of hits in a 10 -minute period The critical value C is the largest value such that $P(X \leqslant c \mid m=20) \leqslant 0.05$
You can use the inverse Poisson function on the GDC to decide which value to check first $P(x \leq 13 \mid m=20)=0.0661 \ldots 0.05$ Too big so reduce the region $P(x \leq 12 \mid m=20)=0.0390 \ldots<0.05$

Critical region $x \leqslant 12$
c) Perform the test using a 5% significance level. Clearly state the conclusion in context.
$11<12$ so $\|$ is in the critical region
Reject H_{0} as test statistic is in critical region. There is sufficient evidence to suggest that the website receives on average fewer hits than they claim.

4.12. 5 Hypothesis Testing for Correlation

Hypothesis Testing for Correlation

What is a hypothesis test for correlation?

- Youcan use at-test to test whether there is linear correlation between two normallydistributed variables
- If specificallytesting forpositive (or negative) linear correlation then a one-tailed test is used
- If testing for anylinearcorrelation then a two-tailed test is used
- A sample will be taken and the raw data will be given
- You might be asked to calculate the PMCC (Pearson's product-moment correlation coefficient)

What are the steps for a hypothesis test for correlation?

- STEP 1:Write the hypotheses
- $H_{0}: \rho=0$
- Clearlystate that ρ represents population correlationcoefficient between the two variables
- In words this means there is no correlation
- $\mathrm{H}_{1}: \rho<0, \mathrm{H}_{1}: \rho>0$ or $\mathrm{H}_{1}: \rho \neq 0$
- STEP 2: Calculate the \boldsymbol{p}-value or the PMCC
- Choose a t-test forlinear regression
- Enter the data as two lists into GDC
- STEP 3: Decide whetherthere is evidence to reject the null hypothesis
- If the p-value < significance level then reject H_{0}
- If the absolute value of the PMCC is bigger than the absolute value of the critical value then © 2024 Exareject H_{0} Practice
- If you are expected to use the PMCC you will be given the critical value in the exam
- STEP 4:Write your conclusion
- If you reject H_{0} then there is evidence to suggest that...
- There is a negative linear correlation between the two variables (for $\left.\mathrm{H}_{1}: \rho<0\right)$
- There is a positive linear correlation between the two variables (for $\mathrm{H}_{1}: \rho>0$)
- There is a linear correlation between the two variables (for $H_{1}: \rho \neq 0$)
- If you accept H_{0} then there is insufficient evidence to reject the null hypothesis which suggests that...
- There is not a negative linear correlation between the two variables (for $\mathrm{H}_{1}: \rho<0$)
- There is not a positive linear correlation between the two variables (for $\mathrm{H}_{1}: \rho>0$)
- There is not a linear correlation between the two variables (for $\mathrm{H}_{1}: \rho \neq 0$)

Worked example

Jessica wants to test whether there is any linear correlation between the distance she runs in a day, $\boldsymbol{d} \mathrm{km}$, and the amount of sleep she has the night after her run, t hours. Over the period of a month she takes a random sample of 9 days, the results are recorded in the table.

Distance (d km)	1.2	2.3	1.5	1.3	2.5	1.8	1.9	2.0	1.1
Sleep (thours)	7.9	8.1	7.6	7.3	8.1	8.4	7.8	7.9	6.8

a) Write down null and alternative hypo theses that Jessica can use for her test.

Let ρ be the correlation coefficient between Jessica's
distances and the hours of sleep she gets.
$H_{0}: \rho=0$
$H_{1}: \rho \neq 0 \quad$ Testing for any linear correlation
b) Perform the hypothes is test forlinear correlation using a 5% signific once level. Clearly state your conclusion.

Type the data in GDC and select a t-fest for linear. regression
Copyright

© 2024 Exam Pap

 $p=0.03833 . .1<0.05$Reject H_{0} as p-value < significance level There is sufficient evidence to suggest that there is a linear correlation between the distance that Jessica runs and the hours she sleeps.

4.12.6 Type I \& Type II Errors

Type I \& Type II Errors

What are Type I \& Type Ilerrors?

- There are four possible outcomes of a hypo thesis test:
- H_{0} is false and H_{0} is rejected
- H_{0} is true and H_{0} is not rejected
- The test is accurate for these two outcomes
- H_{0} is true and H_{0} is rejected
- H_{0} is false and H_{0} is not rejected
- The test has led to an error for these two outcomes
- A Type Ierror occurs when a hypo thesis test gives sufficient evidence to reject H_{0} despite it being true
- This is sometimes called a "false positive"
- In a court case this would be when the defendant is found guilty despite being innocent
- A Type llerror is when a hypothes is test gives insufficient evidence to reject H_{0} despite it being false
- This is sometimes called a "false negative"
- In a court case this would be when the defendant is found inno cent despite being guilty

Conclusion

How do Ifind the probabilities of a Type Ior Type II error occurring?

- You should calculate the probability of errors occurring before a sample is taken
- The probabilities are determined by the critical region
- Equally it is determined by the significance level $\alpha \%$
- Critical regions are determined such that:
- Theykeep the probability of a Type lerror less thanor equal to the significance level
- They maximise the probability of a Type Ierror
- The probability of a Type lerror occurring is equal to the pro bability of being in the critical region if H_{0} were true
- $P($ Type l error $)=P\left(\right.$ being in the critical region $\mid H_{0}$ is true $)$
- Fora continuous distribution (normal, t, χ^{2})
- $P($ Type lerror $)=a \%$
- Fora discrete distribution (binomial, Poisson)
- $\mathrm{P}($ Type lerror $) \leq a \%$
- The probability of a Type Il error occurring is equal to the probability of not being in the critical region given the actual value of the po pulation parameter
- $P($ Type llerror) $=P($ not being in critical region |actual po pulation parameter)
- You need to know the actual population parameter in order to find the pro bability of a Type II error
- Once a sample has been taken you can determine which error could have occurred
- If you rejected H_{0} then you could have made a Type Ierror
- If you accepted H_{0} then you could have made a Type llerror

Can Ireduce the probabilities of making a Type I or Type II error?

- Youcan reduce the probability of a Type lerrorbyreducing the significance level
- However this will increase the probability of a Type llerror
- Youcan reduce the probability of a Type llerror by increasing the significance level
- However this will increase the probability of a Type Ierror
- The onlywayto reduce both probabilities is by increasing the size of the sample

- Exam Tip

- If an exam question asks you to find the probability of a Type I orllerror then double check that the test has not been carried out yet
- The examiner could test your understanding of errors by asking you to state which error could not have occurred once the test has been carried out

Worked example

Lucy can hit the target 70\% of the time when she throws an axe with her right hand. She claims that the proportion, p, of her throws that hit the target is higher than 70% when she uses her left hand. Lucy uses the hypotheses $\mathrm{H}_{0}: p=0.7$ and $\mathrm{H}_{0}: p>0.7$ to test her claim. Lucy makes 100 throws and will reject the null hypo the is if the axe hits the target more than 77 times.
a) find the pro bability of a Type I error.

Let $X \sim B(100, p)$ be the number of times Lucy hits the
target when using her left hand
$P\left(T_{\text {pe }} I\right.$ error $)=P\left(\right.$ being in critical region $\mid H_{0}$ is true $)$
$P($ Type I error $)=P\left(x>\left.77\right|_{p}=0.7\right)$
$=P(78 \leqslant x \leqslant 100 \mid p=0.7)$
$=0.04786 \ldots$
$P\left(T_{\text {type }} I_{\text {error }}\right)=0.0479(3 \mathrm{sf})$
b) Given that Lucy actually hits the target 80% of the time with her left hand, find the probability of a Type II error.

$$
\begin{aligned}
& P(\text { Type II error) })=P \text { (not being in ciritial region true ppulalitionporameter) } \\
& P\left(T_{\text {ope }} \text { II error }\right)=P(X \leq 77 \mid \rho=0.8) \\
& =P(0 \leqslant x \leqslant 77 \mid p=0.8) \\
& =0.2610 \text {. } \\
& P(\text { Type II error) }=0.26(3 \mathrm{sf})
\end{aligned}
$$

