铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

4.1 Statistics Toolkit

4.1.1 Sampling

Types of Data

What are the different types of data?

- Qualitative data is data that is usually given in words not numbers to describe something
- For example: the colour of a teacher's car
- Quantitative data is data that is given using numbers which counts or measures something
- For example: the number of pets that a student has
- Discrete data is quantitative data that needs to be counted
- Discrete data can onlytake specific values from a set of (usually finite) values
- For example: the number of times a coin is flipped until a 'tails' is obtained
- Continuous data is quantitative data that needs to be measured
- Continuo us data can take any value within a range of infinite values
- For example: the height of a student
- Age can be discrete or continuous dependingonthe context orhowit is defined
- If you mean how many years old a person is then this is discrete
- If you mean how long a person has been alive then this is continuous

What is the difference between a population and a sample?

- The population refers to the whole set of things which you are interested in
- For example: if a vet wanted to know how long a typical French bulldogslept for in a day then the po pulation would be all the French bulld ogs in the world
- A sample refers to a subset of the population which is used to collect data from
- For example: the vet might take a sample of French bulld ogs from different cities and record how long they sleep in a day
- A sampling frame is a list of all members of the population
- For example:a list of employees' names within a company
- Using a sample instead of a population:
- Is quicker and cheaper
- Leads to less data needing to be analysed
- Might not fully represent the population
- Might introduce bias

Sampling Techniques

What is a random sample and a biased sample?

- A random sample is where everymember of the population has an equal chance of being included in the sample
- A biased sample is one from which misleading conclusions could be drawn about the population
- Randomsampling is an attempt to minimise bias

What sampling techniques do Ineed to know?

Simple randomsampling

- Simple random sampling is where every group of members from the population has an equal probability of being selected for the sample
- To carry this out you would
- uniquely number everymember of a population
- rand omlyselect n different numbers using a random number generator or a form of lottery (where numbers are selected randomly)
- Effectiveness:
- Useful when you have a small population orwant a small s ample (such as children in a class)
- It can be time-consuming if the sample orpopulation is large
- This can not be used if it is not possible to number or list all the members of the population (such as fish in a lake)

Systematic sampling

- Systematic sampling is where a sample is formed by choo sing members of a population at regular intervals using a list
- To carry this out you would ...
- calculate the size of the interval $k=\frac{\text { size of population }(N)}{\text { size of sample }(n)}$
- choose a random starting point between 1 and k
- select everykth member after the firstone
- Effectiveness:
- Useful when there is a natural order(such as a list of names or a conveyor belt of items)
- Quick and easyto use
- This can not be used if it is not possible to number or list all the members of the population (such as penguins in Antarctica)

Stratified sampling

Page 2 of 33

- Stratified sampling is where the population is divided into disjoint groups and then a random sample is taken from each group
- The proportion of a group that is sampled is equal to the proportion of the po pulation that belong to that group
- To carry this out you would...
- Calculate the number of members sampled from each stratum
- $\frac{\text { size of sample }(n)}{\text { size of population }(N)} \times$ number of members in the group
- Take a random sample from each group
- Effectiveness:
- Useful when there are very different groups of members within a po pulation
- The sample will be representative of the population structure
- The members selected fromeach stratum are chosen randomly
- This can not be used if the po pulation can not be split into groups or if the groups overlap

Quotasampling

- Quota sampling is where the po pulation is split into groups (like stratified sampling) and members of the po pulation are selected until each quota is filled
- To carry this out you would
- Calculate how manypeo ple you need from each group
- Select members from each group until that quota is filled
- The members do not have to be selected randomly
- Effectiveness:
- Useful when collecting data by asking people who walk past you in a public place or when a sampling frame is not available
- This can introduce bias as some members of the population might choose not to be included in the sample

Convenience sampling

- Convenience sampling is where a s ample is formed using available members of the population who fit the criteria
- To carry this out you would...
- Select members that are easiest to reach
- Effectiveness:
- Useful when a list of the population is not possible
- This is unlikely to be representative of the population structure
- This is likelyto produce biased results

What are the main criticisms of sampling techniques?

- Most sampling techniques can be improved by taking a larger sample
- Sampling can intro duce bias - so you want to minimise the bias within a sample
- To minimise bias the sample should be as close to random as possible
- A sample only gives information about tho se members
- Different samples maylead to different conclusions about the population

Worked example

Mike is a biologist studying mice in an open enclosure. He has access to approximately 540 field mice and 260 harvest mice. Mike wants to sample 10 mice and he wants the proportions of the two types of mice in his sample to reflect their respective proportions of the population.
a) Calculate the number of field mice and harvest mice that Mike should include in his sample.

b) Given that Mike does not have a list of all mice in the enclosure, state the name of this sampling method.

No list of population so can not be a random sample

Quota sampling

© 2024 Exam Papers Practice
c) Suggest one way in which Mike could improve his sampling method.

> Mark could improve his sampling method by increasing his sample size

E,
 Exam Papers Practice

Reliability of Data

Howcan Idecide if data is reliable?

- Data from a sample is reliable if similar results would be obtained from a different sample from the same population
- The sample should be representative of the population
- The sample should be big enough
- Sampling a small proportion of a population is unlikely to be reliable

What can cause data to be unreliable?

- If the sample is biased
- It is not random
- If errors are made when collectingdata
- Numbers could be recorded incorrectly, duplicated ormissed out
- If the person collecting the data favours some members overothers
- They might seek out members who will lead to a desired outcome
- They might exclude members if theywould cause the sample to oppose the desired outcome
- If a significant proportion of data is missing
- Some data may be unavailable
- Some members might decide not to be part of the sample
- This will mean the results are not necessarily representative of the population

© 2024 Exam Papers Practice

4.1.2 Data Collection

Methods of Data Collection

How do lchoose variables to investigate?

- Keep the number of variables you investigate to a minimum
- Too many variables at once can be overwhelming
- It can be time-consuming to process unnecessary data
- Youshould choose variables that are linked to what you are investigating
- If you are investigating the ability of adults to solve puzzles you might use the time it takes them as a variable
- Consider which variables are likely to have an effect on what you are investigating
- An adult's reading speed will affect their time to solve a puzzle
- An adult's height is unlikely to affect their time to solve a puzzle

What makes a good survey?

- A survey is a method of collecting data
- Considerwhether the surveyneeds to be in-person
- A pers on might be less likely to answer questions truthfully in person
- You can quickly survey more people remotely or electronically
- Such as postal surveys, phone surveys, internet surveys
- Considerwhether the interviewercould unintentionally influence participants'responses
- If a headteacheris asking students whetherthey enjoyschool then they are more likely to say yes as they think that is what the headteacher wants to hear
- This will intro duce bias

What makes a good questionnaire?

- A questionnaire is a list of questions
- The questions should be unbiased
- Questions should not be leading
- For example: "You enjoyschool, don't you?"
- If options are given for the participant to choose from then they should cover all possible responses
- The questions should not be personal
- This means you should not ask for unnecessary personal information
- Such as date of birth, address, etc
- The questions should not reflect your personal opinions
- For example: "Do you enjoywatching the boring news on TV?"
- People can find it difficult to rate personal feeling/qualities
- For example:"How smart do you think you are?"
- Questions can be structured or unstructured
- Structured questions usually ask the participants to choose from options, give a rating or rank options
- These can be quick to analyse
- The answer choices should be consistent where appro priate
- Unstructured questions let the participants to express their views in their ownwords
- These tend to be more open-ended questions
- These can take longer to analyse but can give more in-depth views
- Questions should be precise and unambiguous
- They should be phrased in a way in which the participants understand exactly what you mean
- For example:"Do you study French or Spanish at school" is not precise
- Some people might reply with "Yes" or "No"
- Some people might reply with "French" or "Spanish"

Exam Papers Practice
© 2024 Exam Papers Practice

Re liability \& Validity

What is reliability \& validity of a data collection method?

- Reliability measures how consistent a process is at measuring a variable
- A process is reliable if you would get the same results byrepeating the process with the same sample using the same conditions
- Validity measures how accurate a process is at measuring a variable
- A process is valid if it is accurately measuring the variable you want it to measure
- If your process is found not to be reliable or valid then:
- Adjust the data collection process
- Change the sampling technique
- Use a largersample

What are tests to check reliability?

- Test-retest
- This is where you use a data collection process with a sample and then repeat the same process with the same sample at a later time
- The results should show positive correlation if the process is reliable
- The results might not perfectlymatch due to external factors during the gap between the datacollection
- Once the sample has been through the process once they will be familiar so this could lead to different results from the second process
- Parallelforms
- This is where you give the same sample a second set of questions (orsecond set of experiments) which are similar to the first set
- The results should show positive correlation if the process is reliable
- It can be difficult to make the two processes similar to each other

What are tests to check validity?

- Content-related validity checks
- This is where you check how well the process measures all aspects of the variable
- If the process is valid then it should cover all as pects of the variable
- These checks require kno wledge of the variable so experts are often used
- An example of a process that is valid: A teacherwants to assess how well students understand calculus so they set questions covering differentiation, integration and applications
- An example of a process that is not valid:

A restaurant manager wants to assess how good a chef is at cooking steaks so asks the chef to make 10 medium steaks

- Criterion-related validity checks

Page 8 of 33

- This is where you check how well one variable predicts the outcome for another variable (called the criterion variable)
- If the process is valid then the variable should be a good predictor
- An example of a process that is valid:

Results from a mock exam being used to predict the results in the actual exam

- An example of a process that is not valid:

Results from measuring the heights of meerkats being used to predict the heights of squirrels

Worked example

Tomas is a dog trainer. Before he agrees to train ado he assesses the do g's obedience. To do this, he first visits the dog, asks it to perform 10 basic commands and records how many the dog success fully carries out. Two days later, Tomas visits the dog a second time and asks it to do the same 10 commands. Tomas assesses 8 do gs using this process and the table below shows the number of commands performed successfullybyeach dogoneach visit.

Dog	1	2	3	4	5	6	7	8
First visit	3	5	2	3	6	2	0	5
Second visit	3	5	2	4	5	2	1	5

a) State the reliability test that Tomas is using.

Tomas is using exactly the same process with the same sample Test -retest
b) Comment on the reliability of Tomas' process.

> The number of commands that each dog successfully performed on the second visit was either the same as the first visit or very similar. Therefore the process is reliable.

Page 9 of 33
For more help visit our website www.exampaperspractice.co.uk

4.1.3 Statistical Measures

Mean, Mode, Median

What are the mean, mode and median?

- Mean, median and mode are measures of central tendency
- Theydescribe where the centre of the data is
- They are all types of averages
- In statistics it is important to be specific about which average you are referring to
- The units forthe mean, mode and median are the same as the units for the data

How are the mean, mode, and median calculated for ungrouped data?

- The mode is the value that occurs most oftenin a dataset
- It is possible for there to be more than one mode
- It is possible for there to be no mode
- In this case do not say the mode is zero
- The median is the middle value when the data is in order of size
- If there are two values in the mid dle then the median is the mid point of the two values
- The mean is the sum of all the values divided by the number of values

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

- Where $\sum_{i=1}^{n} X_{i}=X_{1}+X_{2}+\ldots+X_{n}$ is the sum of the n pieces of data
- The mean can be represented by the symbol μ
- Your GDC can calculate the se statistical measures if you input the data using the statistics mode

Worked example

Find the mode, median and mode for the data set given below.

43	29	70	51	64	43

Mode is the most common
Mode $=43$
Median is the middle when in order

$\frac{43+51}{2}=47$
Median $=47$
$M_{\text {can }}=\frac{\sum x}{n}$
$\sum x=300$ and $n=6$

$$
M_{\text {lan }}=50
$$

Quartiles \& Range

What are quartiles?

- Quartiles are measures of location
- Quartiles divide a population or data set into four equal sections
© 2024 Exam Paper The lower quartile, \boldsymbol{Q}_{1} splits the lowest 25% from the highest 75%
- The median, Q_{2} splits the lowest 50% from the highest 50%
- The upper quartile, Q_{3} splits the lowest 75% from the highest 25%
- There are different methods for finding quartiles
- Values obtained by hand and using technology may differ
- You will be expected to use your GDC to calculate the quartiles

What are the range and interquartile range?

- The range and interquartile range are both measures of dispersion
- They describe how spread out the data is
- The range is the largest value of the data minus the smallest value of the data
- The interquartile range is the range of the central 50% of data
- It is the upper quartile minus the lower quartile

$$
\mathrm{IQR}=Q_{3}-Q_{1}
$$

- This is given in the formula booklet
- The units for the range and interquartile range are the same as the units for the data

Worked example

Find the range and interquartile range for the data set given below.

43	29	70	51	64	43

Range $=$ Maximum - Minimum
70-29
Range $=41$
Find upper and lower quartiles using GDC $Q_{1}=43$ and $Q_{3}=64$ $I Q R=Q_{3}-Q_{1}$ 64-43

IQR=21
By hand

Standard Deviation \& Variance

What are the standard deviation and variance?

- The standard deviation and variance are both measures of dispersion
- Theydescribe how spread out the data is in relation to the mean
- The variance is the mean of the squares of the differences between the values and the mean
- Variance is denoted σ^{2}
- The standard deviation is the square-root of the variance
- Standard deviation is denoted σ
- The units for the stand ard deviation are the same as the units forthe data
- The units for the variance are the square of the units for the data

How are the standard deviation and variance calculated for ungrouped data?

- In the exam you will be expected to use the statistics function on your GDC to calculate the standard deviation and the variance
- Calculating the stand ard deviation and the variance by hand may deepen your understanding
$\sum_{i=1}^{k} f_{i}\left(x_{i}-\mu\right)^{2}$
- The formula forvariance is $\sigma^{2}=$
$\underline{i=1}$ n
- This can be rewritten as

This canberewitenas
kam

$$
P a^{2}=\sum_{i=1}^{n}=
$$

$$
=\frac{\sum_{i=1}^{k} f_{i} X_{i}^{2}}{n}-\mu^{2}
$$

Copyright

© 2024 Exam Papers Practice

- The formula forstandard deviation is $\sigma=\sqrt{\frac{\sum_{i=1} f_{i}\left(x_{i}-\mu\right)^{2}}{n}}$
- This can be rewritten as

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{k} f_{i} X_{i}^{2}}{n}-\mu^{2}}
$$

- Youdo not need to learn these formulae as you will use your GDC to calculate the se

Worked example

Find the variance and standard deviation for the data set given below.

43	29	70	51	64	43

Find variance and standard deviation using $G D C$ $\sigma_{x}^{2}=189.333 \ldots$ and $\sigma_{x}=13.759 \ldots$
Variance $=189(3 \mathrm{sf})$
Standard deviation $=13.8 \quad(3 \mathrm{sf})$

By hand
$\sigma^{2}=\frac{\Sigma x^{2}}{n}-\bar{x}^{2}$
$\left[x^{2}=16136 \quad \bar{x}=50 \quad n=6\right.$
$\sigma^{2}=\frac{16136}{6}-50^{2}=189.333 \ldots$
$\sigma=\sqrt{189.333}=13.759$.
Copyright
© 2024 Exam Papers Practice

4.1.4 Frequency Tables

Ungrouped Data

How are frequency tables used for ungrouped data?

- Frequency tables can be used for ungrouped data when you have lots of the same values within a dataset
- Theycan be used to collect and present data easily
- If the value 4 has a frequency of 3 this means that there are three 4 's in the data set

How are measures of central tendency calculated from frequencytables with ungrouped data?

- The mode is the value that has the highest frequency
- The median is the middle value
- Use cumulative frequencies (running to tals) to find the median
- The mean can be calculated by
- Multiplying each value x_{i} by its frequency f_{i}
- Summing to get $\Sigma f_{i} x_{i}$
- Dividing by the total frequency $n=\Sigma f_{\mathrm{i}}$
- This is given in the formula booklet

- Your GDC can calculate these statistical measures if you input the values and their frequencies using the statistics mode

How are measures of dispersion calculated from frequency tables with ungrouped data?

- The range is the largest value of the data minus the smallest value of the data
- The int erquartile range is calculated by

$$
\mathrm{IQR}=Q_{3}-Q_{1}
$$

- The quartiles can be found byusing your GDC and inputting the values and their frequencies
- The standard deviation and variance can be calculated by hand using the formulae
- Variance

Exam Papers Practice

$$
\sigma^{2}=\frac{\sum_{i=1}^{k} f_{i} X_{i}^{2}}{n}-\mu^{2}
$$

- Standard deviation

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{k} f_{i} X_{i}^{2}}{n}-\mu^{2}}
$$

- You do not need to learn these formulae as you will be expected to use your GDC to find the stand ard deviation and variance
- You maywant to see these formulae to deepen your understanding

(9) Exam Tip

- Always check whether your answers make sense when using your GDC
- The value for a measure of central tend ency should be within the range of data

Exam Papers Practice
© 2024 Exam Papers Practice

Worked example

The frequency table below gives information number of pets owned by 30 students in a class.

Number of pets	0	1	2	3
Frequency	11	5	8	6

Find
a) the mode.

Mode = value with highest frequency
Mode $=0$
b) the median.

Median = middle value
$n=30$ so median is midpoint of $15^{\text {m }}$ and $16^{\text {th }}$

Number of pets	0	1	2	3
Cumulative frequency	11	16	24	30

Median $=1$

c
the mean.

Copyright

© 2024 Exam Papers Practice

$M_{\text {lan }}=1.3$
d) the standard deviation.

Use GDC $\sigma_{x}=1.159 \ldots$
Standard deviation $=1.16$ (3sf)

Grouped Data

How are frequency tables used for grouped data?

- Frequency tables can be used for grouped data when you have lots of the same values within the same interval
- Class intervals will be written using inequalities and witho ut gaps
- $10 \leq x<20$ and $20 \leq x<30$
- If the class interval $10 \leq x<20$ has a frequency of 3 this means there are three values in that interval
- You do not know the exact data values when you are given grouped data

How are measures of centraltendencycalculated from frequencytables with grouped data?

- The modal class is the class that has the highest frequency
- This is for equal class intervals only
- The median is the middle value
- The exact value can not be calculated but it can be estimated by using a cumulative frequency graph
- The exact mean can not be calculated as you do not have the raw data
- The mean can be estimated by
- Identifying the mid-interval value (mid point) x_{i} for each class
- Multiplying each value by the class frequency f_{i}
- Summing to get $\Sigma f_{i} x_{i}$
- Divid ing by the total frequency $n=\Sigma f_{\mathrm{i}}$
- This is given in the formula booklet

$$
\bar{X}=\frac{\sum_{i=1}^{k} f_{i} X_{i}}{n}
$$

- Your GDC can estimate the mean if you input the mid-interval values and the class frequencies using the statistics mode

Howare measures of dispersioncalculated from frequencytables with grouped data?

- The exact range can not be calculated as the largest and smallest values are unknown
- The interquartile range can be estimated by

$$
\mathrm{IQR}=Q_{3}-Q_{1}
$$

- Estimates of the quartiles can be found byusing a cumulative frequency graph
- The standard deviation and variance can be estimated using the mid-interval values x_{i} in the formulae
- Variance

$$
\sigma^{2}=\frac{\sum_{i=1}^{k} f_{i} X_{i}^{2}}{n}-\mu^{2}
$$

- Standard deviation

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{k} f_{i} x_{i}^{2}}{n}-\mu^{2}}
$$

- You do not need to learn these formulae as you will be expected to use your GDC to estimate the stand ard deviation and variance using the mid -interval values
- Youmaywant to use these formulae to deepenyour understanding

© Exam Tip

- As you can only estimate statistical measures from a grouped frequencytable it is good practice to indicate that the values are not exact
- You can do this byrounding values rather than leaving as surds and fractions
- $\bar{X}=0.333(3 \mathrm{sf})$ ratherthan $\bar{X}=\frac{1}{3}$

Worked example

The table below shows the heights in cm of a group of 25 students.

Height, h	Frequency
$150 \leq h<155$	3
$155 \leq h<160$	5
$160 \leq h<165$	9
$165 \leq h<170$	7
$170 \leq h<175$	1

a) Write down the modal class.
Modal class = class with highest frequency
Modal class $=160 \leq h<165$
b) Write down the mid-interval value of the modal class.

Mid-interval value $=162.5 \mathrm{~cm}$
Copyright
c) am Calculate an estimate for the mean height.

Use mid-interval values to estimate the mean
Formula
Booklet

$\bar{x}=\frac{3 \times 152.5+5 \times 157.5+9 \times 162.5+7 \times 167.5+1 \times 172.5}{3+5+9+7+1}=\frac{4052.5}{25}$
Estimated mean $=162.1 \mathrm{~cm}$

4.1. 5 Line ar Transformations of Data

Linear Transformations of Data

Why are linear transformations of dat a used?

- Sometimes data might be verylarge orverysmall
- You can apply linear transformation to the data to make the values more manageable
- You may have heard this referred to as:
- Effects of constant changes
- Linearcoding
- Linear transformations of data can affect the statistical measures

How is the mean affected by a linear transformation of data?

- Let \bar{X} be the mean of some data
- If you multiply each value by a constant \boldsymbol{k} then you will need to multiply the mean by \boldsymbol{k}
- Mean is $\boldsymbol{k} \bar{X}$
- If you add or subtract a constant afrom all the values then you will need to add or subtract the constant ato the mean
- Mean is $\bar{X} \pm a$

How is the variance and standard deviation affected by a linear transformation of data?

- Let σ^{2} be the variance of some data
- σ is the standard deviation
- If you multiply each value by a constant \boldsymbol{k} then you will need to multiply the variance by $\boldsymbol{k}^{\mathbf{2}}$
- Variance is $k^{2} \sigma^{2}$
- You will need to multiply the stand ard deviation by the absolute value of k
- Stand ard deviation is $|\boldsymbol{k}| \sigma$
- If you add or subtract a constant afrom all the values then the variance and the standard deviationstay the same
- Variance is σ^{2}
- Standard deviation is σ

(9) Exam Tip

- If you forget these results in an exam then you can lo ok in the HL section of the formula booklet to see them written in a more algebraic way
- Linear transformation of a single variable

$$
\begin{aligned}
\mathrm{E}(a X+b) & =a \mathrm{E}(X)+b \\
\operatorname{Var}(a X+b) & =a^{2} \operatorname{Var}(X)
\end{aligned}
$$

- where $\mathrm{E}(. .$.$) means the mean and \operatorname{Var}(. .$.$) means the variance$

Worked example

A teacher marks his students' tests. The raw mean score is 31 marks and the stand ard deviation is 5 marks. The teacher standardises the score by doubling the raw score and then adding 10.
a) Calculate the mean standardised score.

If data is multiplied by k then mean is multiplied by k If k is added to data then k is added to the mean $31 \times 2+10$

Mean of standardised scores $=72$
b) Calculate the standard deviation of the standardised scores.
© 2024 Exam Papers If data is multiplied by k then standard deviation is multiplied by $|k|$

If k is added to data then standard deviation is unchanged
5×2
Standard deviation of standardised scores $=10$

4.1.6 Outliers

Outliers

What are outliers?

- Outliers are extreme data values that do not fit with the rest of the data
- They are either a lot bigger ora lot smallerthan the rest of the data
- Outliers are defined as values that are more than $1.5 \times$ IQR from the nearest quartile
- x is an outlier if $x<Q_{1}-1.5 \times I Q R$ or $x>Q_{3}+1.5 \times I Q R$
- Outliers can have a big effect on some statistical measures

Should Iremove outliers?

- The decision to remove outliers will depend on the context
- Outliers should be removed if they are found to be errors
- The data may have been recorded incorrectly
- For example:The number 17 may have been recorded as 71 by mistake
- Outliers should not be removed if they are a valid part of the sample
- The data mayneed to be checked to verifythat it is not an error
- For example:The annual salaries of employees of a business might appear to have an outlier but this could be the director's salary

Exam Papers Practice
 Copyright

© 2024 Exam Papers Practice

Worked example

The ages, in years, of a number of child re attending a birthday party are given below.

$$
2,7,5,4,8,4,6,5,5,29,2,5,13
$$

a) Identify any outliers within the dataset.
x is an outlier if $x<Q_{1}-1.5 \times 1 Q R$ or $x>Q_{3}+1.5 \times 1 Q R$
Using GDC
$Q_{1}=4$ and $Q_{3}=7.5 \quad \therefore 1 Q R=3.5$
$Q_{1}-1.5 \times 1 Q R=4-1.5 \times 3.5=-1.25$
$Q_{3}+1.5 \times 1 Q R=7.5+1.5 \times 3.5=12.75$
Outliers are 13 and 29
b) Suggest which values) should be removed. Justify yo ur answer.

I3 should not be removed as it is a valid age of a child.

29 should be removed as this is an age of an adult.

4.1.7 Univariate Data

Box Plots

Univariate data is data that is in one variable.

What is a boxplot (boxand whisker diagram)?

- A boxplot is a graph that clearly shows keystatistics from a data set
- It shows the median, quartiles, minimum and maximum values and outliers
- It does not show any other individual data items
- The middle 50% of the data will be represented by the box section of the graph and the lower and upper 25% of the data will be represented byeach of the whiskers
- Any outliers are represented with a cross on the outside of the whiskers
- If there is an outlier then the whiskerwill end at the value before the outlier
- Onlyone axis is used when graphing a box plot
- It is still important to make sure the axis has a clear, even scale and is labelled with units

© 2024 Exam Papers Practice

What are boxplots usefulfor?

- Boxplots can clearly show the shape of the distribution
- If a boxplot is symmetrical about the median then the data could be normally distributed
- Boxplots are often used for comparing two sets of data
- Two box plots will be drawn next to each o ther using the same axis
- They are useful for comparing data because it is easyto see the main shape of the distribution of the data from a box plot
- You can easily compare the medians and interquartile ranges

Exam Tip

- In an exam you can use your GDC to draw a box plot if you have the raw data
- You calculator's boxplot can also include outliers so this is a good wayto check

Worked example

The distances, in metres, travelled by 15 snails in a one-minute period are recorded and shown below:

$$
0.5,0.7,1.0,1.1,1.2,1.2,1.2,1.3,1.4,1.4,1.4,1.4,1.5,1.5,1.5
$$

a) i) Find the values of Q_{1}, Q_{2} and Q_{3}.
ii) Find the interquartile range.
iii) Identify any outliers.

Using GDC
$Q_{1}=1.1 \mathrm{~m} \quad Q_{2}=1.3 \mathrm{~m} \quad \mathrm{Q}_{3} 1.14 \mathrm{~m}$
$I Q R=Q_{3}-Q_{1}=1.4-1.1$
$I Q R=0.3 \mathrm{~m}$
$Q_{1}-1.5 \times 1 Q R=1.1-1.5 \times 0.3=0.65$
$Q_{3}+1.5 \times 1 Q R=1.4+1.5 \times 0.3=1.85$
0.5 m is an outlier
b) Draw a box plot for the data.

Copyright
© 2024 Exam Paper

Cumulative Frequency Graphs

What is cumulative frequency?

- The cumulative frequency of x is the running total of the frequencies for the values that are less than orequal to x
- For grouped data you use the upper boundary of a class interval to find the cumulative frequency of that class

What is a cumulative frequency graph?

- A cumulative frequency graph is used with data that has been organised into a grouped frequency table
- Some coordinates are plotted
- The x-coordinates are the upper boundaries of the class intervals
- The y-coordinates are the cumulative frequencies of that class interval
- The coordinates are then jo ined to gether by hand using a smooth increasing curve

What are cumulative frequency graphs usefulfor?

- Theycan be used to estimate statistical measures
- Draw a horizontal line from the y-axis to the curve
- For the median: draw the line at 50% of the total frequency
- For the lower quartile: draw the line at 25% of the total frequency
- For the upper quartile: draw the line at 75% of the total frequency
- For the $p^{\text {th }}$ percentile: draw the line at $p \%$ of the to tal frequency
- Draw a vertical line down from the curve to the x-axis
- This \boldsymbol{x}-value is the relevant statistical measure
- They can used to estimate the number of values that are bigger/s mall than a given value
- Draw a vertical line from the given value on the x-axis to the curve
- Draw a horizont al line from the curve to the y-axis
- This value is an estimate for how many values are less than or equal to the given value
- To estimate the number that is greater than the value subtract this numberfrom the total frequency
- Theycan be used to estimate the interquartile range $\mathrm{IQR}=Q_{3}-Q_{1}$
- Theycan be used to construct aboxplot forgrouped data

C Worked example

The cumulative frequency graph below shows the lengths in cm, l, of 30 puppies in a training group.

a) Given that the interval $40 \leq 1<45$ was used when collecting data, find the frequency of \square this class.

Copyright

b) Use the graph to find an estimate for the interquartile range of the lengths.

$$
\begin{array}{ll}
\frac{1}{4} \times 30=7.5 & Q_{1}=39.5 \\
\frac{3}{4} \times 30=2.25 & Q_{3}=51.4
\end{array}
$$

$$
I Q R=Q_{3}-Q_{1}=51.4-395
$$

$$
Q Q=11.9 \mathrm{~cm}
$$

c) Estimate the percentage of puppies with length more than 51 cm .

Histograms

What is a (frequency) histogram?

- A frequency histo gram clearly shows the frequency of class intervals
- The classes will have equal class intervals
- The frequency will be on the y-axis
- The bar for a class interval will begin at the lowerbound ary and end at the upper bound ary
- A frequency histo gram is similar to a bar chart
- Abar chart is used for qualitative or discrete data and has gaps between the bars
- A frequency histo gram is used for continuous data and has no gaps between bars

What are (frequency)histograms usefulfor?

- Theyshow the modal class clearly
- Theyshow the shape of the distribution
- It is important the class intervals are of equal wid th
- Theycan show whether the variable can be modelled by a normal distribution
- If the shape is symmetrical and bell-shaped

Exam Papers Practice

Worked example

The table below and its corresponding his to gram show the mass, in kg, of some new born bottlenose dolphins.

Mass, $m \mathrm{~kg}$	Frequency
$4 \leq m<8$	4
$8 \leq m<12$	15
$12 \leq m<16$	19
$16 \leq m<20$	10
$20 \leq m<24$	6

a) Draw a frequency histo gram to represent the data.

b) Write down the modal class.

Modal class $=$ class with highest frequency
Modal class $=12 \leq m<16$

4.1.8 Interpreting Data

Interpreting Data

How do linterpret statistical measures?

- The mode is us efulfor qualitative data
- It is not as us eful for quantitative data as there is not always a unique mode
- The meanincludes all values
- It is affected byoutliers
- A smaller/largermean is preferable depending onthe scenario
- A smaller mean time for completing a puzzle is better
- Abiggermean score on a test is better
- The median is not affected by outliers
- It does not use all the values
- The range gives the fullspread of the all of the data
- It is affected byoutliers
- The int erquartile range gives the spread of the middle 50% about the median and is not affected by outliers
- It does not use all the values
- A bigger IQR means the data is more spread out about the median
- A smaller IQR means the data is more centred about the median
- The standard deviation and variance use all the values to give a measure of the average spread of the data about the mean
- Theyare affected byoutliers
- A biggerstandard deviation means the data is more spread out about the mean
- A smaller stand ard deviation means the data is more centred abo ut the mean

How do Ichoose which diagram to use to represent data?

- Boxplots
- Can be used with ungrouped univariate data
- Shows the range, interquartile range and quartiles clearly
- Veryuseful forcomparing data patterns quickly
- Cumulative frequency graphs
- Can be used with continuous grouped univariate data
- Shows the running total of the frequencies that fall below the upper bound of each class
- Histograms
- Can be used with continuous grouped univariate data
- Used with equal class intervals
- Shows the frequencies of the group
- Scatter diagrams
- Can be used with ungrouped bivariate data
- Shows the graphical relationship between the variables

How do lcompare two ormoredatasets?

- Compare a measure of central tendency
- If the data contains outliers - use the median
- If the data is roughly symmetrical - use the mean
- Compare a measure of dispersion
- If the data contains outliers - use the int erquartile range
- If the data is roughly symmetrical - use the standard deviation
- Consider whetherit is better to have a smaller orbigger average
- This will depend on the context
- A smaller average time for completing a puzzle is better
- A bigger average score on a test is better
- Considerwhetherit is betterto have a smallerorbigger spread
- Usuallya smaller spread means it is more consistent
- Always relate the comparisons to the context and consider reasons
- Consider the sampling technique and the data collection method

Exam Papers Practice
© 2024 Exam Papers Practice

(. Worked example

The box plots below show the waiting times for the two doctor surgeries, HealthHut and FitFirst.

Compare the two distributions of waiting times in context.

Compare :

- a measure of central tendency
- a measure of dispersion

Health Hut's median waiting time is smaller than Fit First's $20<24$). On average patients get seen quicker at Health Hut.

Fit First's interquartile range is smaller than Health Hut's $(13<19)$. There is less variability of waiting times at Fit First.

