

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

4.1 Scalars & Vectors

PHYSICS

AQA A Level Revision Notes

4.1 Scalars & Vectors

CONTENTS

4.1.1 Scalars & Vectors

4.1.2 Resolving Vectors

4.1.1 Scalars & Vectors

Scalars & Vectors

- · A scalar is a quantity which only has a magnitude (size)
- · A vector is a quantity which has both a magnitude and a direction
- For example, if a person goes on a hike in the woods to a location which is a couple of miles
 from their starting point
 - As the crow flies, their displacement will only be a few miles but the distance they walked will be much longer

Displacement is a vector while distance is a scalar quantity

- Distance is a scalar quantity because it describes how far an object has travelled overall, but not the direction it has travelled in
- **Displacement** is a vector quantity because it describes how far an object is from where it started and in what direction
- Some common scalar and vector quantities are shown in the table below:

Scalars and Vectors Table

SCALARS	VECTORS
DISTANCE	DISPLACEMENT
SPEED	VELOCITY
MASS	ACCELERATION
TIME	FORCE
ENERGY	MOMENTUM
VOLUME	
DENSITY	
PRESSURE	
ELECTRIC CHARGE	
TEMPERATURE DERS	PRACTIC

Exam Tip

Do you have trouble figuring out if a quantity is a vector or a scalar? Just think - can this quantity have a minus sign? For example - can you have negative energy? No. Can you have negative displacement? Yes!

Combining Vectors

- Vectors are represented by an arrow
 - The arrowhead indicates the direction of the vector
 - The length of the arrow represents the magnitude
- · Vectors can be combined by adding them to produce the resultant vector
 - The resultant vector is sometimes known as the 'net' vector (eg. the net force)
- . There are two methods that can be used to add vectors
 - Calculation if the vectors are perpendicular
 - · Scale drawing if the vectors are not perpendicular

Vector Calculation

- · Vector calculations will be limited to two vectors at right angles
- This means the combined vectors produce a right-angled triangle and the magnitude (length) of the resultant vector is found using Pythagoras' theorem

 $The \, magnitude \, of \, the \, resultant \, vector \, is \, found \, by \, using \, Pythagoras \, {}' \, Theorem \, In the experimental experiments and the experimental e$

- The direction of the resultant vector is found from the angle it makes with the horizontal or vertical
 - The question should imply which angle it is referring to (ie. Calculate the angle from the x-axis)
- Calculating the angle of this resultant vector from the horizontal or vertical can be done
 using trigonometry
 - Either the sine, cosine or tangent formula can be used depending on which vector magnitudes are calculated

The direction of vectors is found by using trigonometry

Scale Drawing

- When two vectors are not at right angles, the resultant vector can be calculated using a scale drawing
 - Step 1: Link the vectors head-to-tail if they aren't already
 - Step 2: Draw the resultant vector using the triangle or parallelogram method
 - Step 3: Measure the length of the resultant vector using a ruler
 - Step 4: Measure the angle of the resultant vector (from North if it is a bearing) using a protractor

A scale drawing of two vector additions. The magnitude of resultant vector R is found using a rule and its direction is found using a protractor

- Note that with scale drawings, a scale may be given for the diagram such as 1 cm = 1 km since only limited lengths can be measured using a ruler
- . The final answer is always converted back to the units needed in the diagram
 - Eg. For a scale of 1cm = 2 km, a resultant vector with a length of 5 cm measured on your ruler is actually 10 km in the scenario
- There are two methods that can be used to combine vectors: the **triangle method** and the **parallelogram method**
- · To combine vectors using the triangle method:
 - Step 1: link the vectors head-to-tail.
 - Step 2: the resultant vector is formed by connecting the tail of the first vector to the head of the second vector
- · To combine vectors using the parallelogram method:
 - Step 1: link the vectors tail-to-tail
 - · Step 2: complete the resulting parallelogram
 - o Step 3: the resultant vector is the diagonal of the parallelogram

Vector Addition

Draw the vector c = a + b

TRIANGLE METHOD

STEP 1: LINK THE VECTORS HEAD-TO-TAIL

STEP 2: FORM THE RESULTANT VECTOR FROM LINKING THE TAIL OF a TO THE HEAD OF b

STEP 1: LINK THE VECTORS
TAIL-TO-TAIL

STEP 2: COMPLETE THE RESULTING PARALLELOGRAM

STEP 3: THE RESULTANT VECTOR
IS THE DIAGONAL OF THE PARALLELOGRAM

Page 6 of 15

Vector Subtraction

Draw the vector c = a - b

PARALLELOGRAM METHOD

STEP 1: LINK THE VECTORS TAIL-TO-TAIL

STEP 2: COMPLETE THE RESULTING PARALLELOGRAM

STEP 3: THE RESULTANT VECTOR IS THE DIAGONAL OF THE PARALLELOGRAM

?

Worked Example

A hiker walks a distance of 6 km due east and 10 km due north. Calculate the magnitude of their displacement and its direction from the horizontal

Step 1: Draw a vector diagram

Step 2: Calculate the magnitude of the resultant vector using Pythagoras' Theorem

$$R = \sqrt{6^2 + 10^2}$$

Step 3: Calculate the direction of the resultant vector using trigonometry

Exam Tip

Pythagoras' Theorem and trigonometry are consistently used in vector addition, so make sure you're fully confident with the maths here!

4.1.2 Resolving Vectors

Resolving Vectors RACTIC

- · Two vectors can be represented by a single resultant vector
 - $\circ \ \ \text{Resolving a vector is the opposite of adding vectors}$
- · A single resultant vector can be resolved
 - This means it can be represented by two vectors, which in combination have the same effect as the original one
- When a single resultant vector is broken down into its parts, those parts are called components
- For example, a force vector of magnitude F and an angle of θ to the horizontal is shown below

The resultant force F at an angle θ to the horizontal

 It is possible to resolve this vector into its horizontal and vertical components using trigonometry

The resultant force F can be split into its horizontal and vertical components

- For the horizontal component, F_x = F cos θ
- For the vertical component, $F_v = F \sin \theta$

Forces on an Inclined Plane

- Objects on an inclined plane is a common scenario in which vectors need to be resolved
 - An inclined plane, or a slope, is a flat surface tilted at an angle, θ
- Instead of thinking of the component of the forces as horizontal and vertical, it is easier to think of them as parallel or perpendicular to the slope
- The weight of the object is vertically downwards and the normal (or reaction) force, R is always vertically up from the object
- The weight Wis a vector and can be split into the following components:
 - W cos (θ) perpendicular to the slope
 - Wsin (θ) parallel to the slope
- If there is no friction, the force W sin (θ) causes the object to move down the slope
- The object is not moving perpendicular to the slope, therefore, the normal force R = W cos
 (θ)

The weight vector of an object on an inclined plane can be split into its components parallel and perpendicular to the slope

Worked Example

A helicopter provides a lift of 250 kN when the blades are tilted at 15° from the vertical.

Calculate the horizontal and vertical components of the lift force.

Step 1: Draw a vector triangle of the resolved forces

Step 2: Calculate the vertical component of the lift force

 $Vertical = 250 \times cos(15) = 242 \text{ kN}$

Step 3: Calculate the horizontal component of the lift force

Horizontal = $250 \times \sin(15) = 64.7 \text{ kN}$

Exam Tip

If you're unsure as to which component of the force is $\cos\theta$ or $\sin\theta$, just remember that the $\cos\theta$ is always the adjacent side of the right-angled triangle AKA, making a 'cos sandwich'

- · Coplanar forces can be represented by vector triangles
- · Forces are in equilibrium if an object is either
 - At rest
 - Moving at constant velocity
- In equilibrium, coplanar forces are represented by closed vector triangles
 - The vectors, when joined together, form a closed path
- · The most common forces on objects are
 - Weight
 - · Normal reaction force
 - o Tension (from cords and strings)
 - Friction
- The forces on a body in equilibrium are demonstrated below:

A VEHICLE IS AT REST ON A SLOPE AND HAS THREE FORCES ACTING ON IT TO KEEP IT IN EQUILIBRIUM

NORMAL REACTION

STEP 1: DRAW ALL THE FORCES ON THE FREE-BODY DIAGRAM STEP 2: REMOVE THE OBJECT AND PUT ALL THE FORCES COMING FROM A SINGLE POINT STEP 3:
REARRANGE THE FORCES
INTO A CLOSED VECTOR
TRIANGLE.
KEEP THE SAME LENGTH
AND DIRECTION

Three forces on an object in equilibrium form a closed vector triangle

?

Worked Example

A weight hangs in equilibrium from a cable at point **X**. The tensions in the cables are T_1 and T_2 as shown.

Which diagram correctly represents the forces acting at point ${\bf X}$?

ANSWER: A

STEP 1

STEP 2

STEP 3

EXAM

Exam Tip

The diagrams in exam questions about this topic could ask you to draw to scale, so make sure you have a ruler handy!