

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

IB Chemistry: SL

4.1 Ionic & Covalent Bonding

CHEMISTRY

SL

4.1 Ionic & Covalent Bonding

Question Paper

Course	DP IB Chemistry
Section	4. Chemical Bonding & Structure
Topic	4.1 Ionic & Covalent Bonding
Difficulty	Hard

EXAM PAPERS PRACTICE

Time allowed: 20

Score: /10

Percentage: /100

The nitrate(V) ion, NO_3^- , is a polyatomic ion, bonded by covalent bonds.

Which of the following shows the correct displayed formula for the nitrate ion?

[1 mark]

EXAM PAPERS PRACTICE

Question 2

In which series of compounds does covalent character increase when going from left to right?

- A. KI, KBr, KCI
- B. NaI, KI, RbI
- C. NaCl, MgCl2, AlCl3
- D. SO₂, P₄O₁₀, SiO₂

CHCl₃ and Br₂ are both liquids at room temperature due to the existence of dipoles.

What dipoles are involved within CHCl₃and Br₂?

	HCl₃	Br₂	
А	induced dipoles only	induced dipoles only	
В	induced dipoles only	induced dipoles and permanent dipoles	
С	induced dipoles and permanent dipoles	induced dipoles and permanent dipoles	
D	induced dipoles and permanent dipoles	induced dipoles and	

[1 mark]

Question 4

What are the correct formulas for the following ions?

	Phosphate	Ammonium	Ethanoate	Nitrite
А	PO ₄ ³⁻	NH₄ ⁺	CH₃COO⁺	NO₃⁻
В	PO ₃ ²⁻	NH ₄ ⁺	CH₃COO⁻	NO₂⁻
С	PO ₄ ³⁻	NH ₄ ⁻	CH₃COO⁻	NO₂⁻
D	PO ₄ ²⁻	NH ₄ ⁺	CH₃CH₂COO⁻	NO ₃ -

The periodic table may be needed to answer this question.

Which is the shortest bond length in the following gases?

- A. oxygen-oxygen in oxygen gas, O₂
- B. carbon-carbon in ethyne gas, C₂H₂
- C. nitrogen-nitrogen in nitrogen gas, N₂
- D. oxygen-oxygen in ozone gas, O₃

[1 mark]

Question 6

Which statement best describes the intramolecular bonding in a carbonate ion, CO₃²⁻

- A. Only London forces
- B. Electrostatic attraction between pairs of electrons and positively charged nuclei
- C. Permanent dipole permanent dipole forces
- D. Electrostatic attraction between separate carbonate ions

[1 mark]

EXAM PAPERS PRACTICE

Question 7

The number of electrons in the valence shell of elements X and Y are 5 and 7 respectively. What is the formula and type of compound formed from these elements?

- A. Covalent, XY₃
- B. Ionic, XY₃
- C. Covalent, X₃Y
- D. Ionic, X₃Y

What is the correct structure of the chlorite ion, ClO₂₋?

$$\begin{bmatrix} \overset{\circ}{\times}\overset{\circ}{\times}\overset{\circ}{\times}\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\times}\overset{\circ}{\circ}\overset{\circ}{$$

[1 mark]

Question 9

Which of the following statements about 2-chloropropene, CH₂C(Cl)CH₃ is is **not** correct

- A. There are 3 lone pairs in the molecule
- B. There are 24 valence electrons in the molecule
- C. The molecule does obey the octet rule
- D. The molecule does not obey the octet rule

[1 mark]

Which of the following structures do **not** obey the octet rule?

- I. BeCl₂
- II. BF₃
- III. H₂O
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III