4.1 Abstraction and automation part 2

Name:

Class:

Date:

Time: 361 minutes

Marks:
241 marks

Comments:

Q1.
(a) Dry run the following algorithm by completing the trace table.

```
x \longleftarrow5
y \longleftarrow 3
Result \longleftarrow 1
REPEAT
Result \longleftarrow Result * x
        y y - 1
UNTIL y=0
```

\mathbf{x}	\mathbf{y}	Result
5	3	1

(b) What is the purpose of this algorithm?

Processes are rated in priority according to their expected running times, Processes with the shortest running times are given top priority. A process joining the list will be placed immediately after all other processes of equal or higher priority. The name of the process indicates the order in which it joined the list. Process6 joined the list before Process7.

The table below contains for each process its name, the memory address of its process control block, its expected running time and a pointer to the position in the table of the next process to be executed.

Processes are entered in the table wherever there is a free slot.
(i) Complete the pointer column after the following processes have been placed in the table:

HeadPointer $=6$						
Position	Name	Running Time	Address	Pointer		
1	Process6	7	01400			
2						

3	Process7	17	01700	
4	Process2	17	02300	
5	Process9	45	04100	
6	Process5	2	01200	
7				
8	Process19	5	01900	

(ii) The scheduler program is written in a high level language. Name and describe a suitable data structure for this table.
\qquad
\qquad
(iii) The Computer System Manager may wish to view the current order in which the runnable processes are predicted to run. Write an algorithm that will print the process names in runnable order.

\qquad
\qquad
(iv) Name another list of processes that must be maintained by the operating system. Explain why the processes are in this list.
\qquad
\qquad
\qquad
\qquad

Q3.
The following algorithm uses an array Values containing four numbers.
Values

1	24
2	13
3	57
4	45

```
Result \(\longleftarrow 0\)
Index \(\longleftarrow 0\)
Repeat
    Index \(\longleftarrow\) Index +1
    If Result < Values[Index]
            Then Result \(\longleftarrow\) Values[Index]
        EndIf
Until Index \(=4\)
```

(a) Dry run this algorithm by using the trace table below.

(b) What is the purpose of this algorithm?
\qquad

Q4.
A recursively-defined procedure X with three integer parameters is defined below.
x DIV y calculates how many times y divides exactly into x. For example 7 DIV $3=2$.

```
Procedure X (E,L,H)
    If L > H
        Then Print 'False'
        Else M \longleftarrow (L+H) DIV 2
```

```
If E = List[M]
    Then Print 'True'
    Else
    If E < List[M]
                                    Then X (E,L,M-1)
                                    Else X (E,M+1,H)
                            Endif
                            Endif
```

 Endif
 EndProc
(a) What is meant by recursively-defined?
\qquad
(b) (i) Using the table below, dry-run the procedure call $\mathrm{X}(6502,1,11)$ applied to the integer array List containing the following elements:

E	L	\mathbf{H}	\mathbf{M}	List[M]	Printed Output

(ii) What process does procedure X describe?

Q5.
(a) Name two different coding systems used to represent characters in a computer system.

1. \qquad
2. \qquad
(b) In one coding system the character digits are assigned the decimal number codes 48 to 57 .
```
The operators DIV and MOD perform integer arithmetic.
x DIV y calculates how many times y divides into x,
        for example 7 DIV 3 = 2.
x MOD y calculates the remainder that results after the division,
        for example 7 MOD 3 = 1.
```

(i) The following algorithm uses an array Result. Dry run this algorithm by completing the trace table below.

UNTIL $\mathrm{x}=0$

(ii) Explain the purpose of the algorithm.
\qquad

Q6.
A recursively-defined procedure B, which takes an integer as its single parameter, is defined below. The operators DIV and MOD perform integer arithmetic.
x DIV y calculates how many times y divides exactly into x. For example 7 DIV $3=2$ x MOD y calculates the remainder that results. For example 7 MOD $3=1$.

```
Procedure B (Number)
        If (Number = 0) OR (Number = 1)
            Then Print (Number)
            Else
                B (Number DIV 2)
                Print (Number MOD 2)
    EndIf
EndProcedure
```

(a) What is meant by recursively-defined?
\qquad
\qquad
(b) Why is a stack necessary to execute procedure B recursively?

(c) Dry run the procedure call $B(53)$ showing clearly the values of the parameter and the printed output for the six calls of B.

P

Call Number	Parameter
1	53
2	26
3	13
4	
5	
6	

Printed Output: \qquad
(d) What process does procedure B describe?
(Total 9 marks)

Q7.
The following code is part of a high level program to manipulate text:

```
Var SI: String
Var S2: String
Var Ptr: Integer
Var L: String
S1 := "PAT"
S2 := "" {"" denotes an empty string}
For Ptr := 1 To 3 Do
    L := Copy (S1, Ptr)
    S2 := Concat (L, S2)
EndFor
If S1 = S2
    Then Print ('True')
    Else Print ('False')
EndIf
```

(a) By copying one relevant line from the above code, give an example of:
(i) variable declaration \qquad
(ii) selection statement \qquad
(iii) iteration \qquad
(b) The built-in subroutines Copy, Concat and Print have been used in the above code.

Copy (\mathbf{S}, \mathbf{n}) returns the $\mathrm{n}^{\text {th }}$ character of string S example: Copy ("ABCDE",2) returns the character "B"

Concat (S1, S2) concatenates the two strings S1 and S2 and returns a single string example: Concat ("ABCD","EF") returns the string "ABCDEF".

Print (S) prints the string S as output.

- Subroutines are either functions or procedures. Indicate, by ticking the correct boxes, what each of the above subroutines is.

subroutine	procedure	function
copy		
concat		
print		

(c) Dry run the above code by completing the table below.

S1	Ptr	L	S2
"PAT"			""
	1	"P"	"P"

Printed Output:			

(Total 14 marks)

Q8.
The list Days contains the following representation of the days of the week.
[Sun, Mon, Tue, Wed, Thu, Fri, Sat]
The table below shows some functions which take a list as their single argument and return a result which is either an element of a list, another list, or a Boolean value.

Head(list) - returns the element at the head of list (e.g. Head(Days) \rightarrow Sun) if list is non empty otherwise it reports an error.

Tail(list) - returns a new list containing all but the first element of the original list (e.g. Tail(Days) \rightarrow [Mon, Tue, Wed, Thu, Fri, Sat]) if list is non-empty otherwise it reports an error.

Empty(list) - returns True if list is the empty list or False otherwise. The empty list is denoted by[]
(a) What result is returned when the following function calls are made?
(i) $\quad \mathrm{Head}($ Tail(Days))

(iii) Empty(Tail(Tail(Tail(Days))))
(b) Explain why it is faster to access these elements if the above data is stored as a one dimensional array.
\qquad
\qquad
(2)
(Total 5 marks)

Q9.
The algorithm below re-arranges numbers stored in a one-dimensional array called List. Ptr is an integer variable used as an index (subscript) which identifies elements within List. Temp is a variable, which is used as a temporary store for numbers from List.

[^0]```
While Ptr < 10 Do
 If List [Ptr] > List [Ptr+ 1] Then
 Temp \longleftarrow List [Ptr]
 List [Ptr] \longleftarrow List [Ptr+l]
 List [Ptr+l] \longleftarrow Temp
 Endif
 Ptr \longleftarrowPtr+ 1
```

Endwhile
(a) Dry-run the algorithm by completing the table below,

It is only necessary to show those numbers which change at a particular step.

(b) What will happen when $\operatorname{Ptr}=10$ ?
$\qquad$
(c) If the whole algorithm is now applied to this rearranged list, what will be the values of:
(i) List[1] $\qquad$
(ii) List[9] $\qquad$
(iii) List[10]? $\qquad$
(Total 11 marks)

## Q10.

The operators DIV and MOD perform integer arithmetic.
$x$ DIV y calculates how many times y divides into $x$, for example 7 DIV $3=2$.
x MOD y calculates the remainder that results after the division, for example 7 MOD $3=$
1.
(a) The following algorithm uses an array Result. Dry run this algorithm by completing the trace table below.


## EXAM PAPERS PRACTICE <br> (b) What is the purpose of this algorithm?

$\qquad$

## Q11.

A procedure to process an array of numbers is defined as follows.

```
Procedure P(Number)
 Repeat
 X}\leftarrow\mathrm{ StartofArray
 Flag \leftarrow False
 Repeat
 If Number(X) > Number (X+ 1)
 Then
 Begin
```

```
 Temp \leftarrow Number (X)
 Number (X) \leftarrow Number (X+ 1)
 Number (X+I) \leftarrow Temp
 Flag \leftarrow True
 End
 X \leftarrow X+1
 Until EndofArray
 Until Flag = False
```

    Endproc
    The array number, containing $17,11,21,9,23,15$, is to be processed by this procedure.
(a) List the array after the outer Repeat loop has been executed once.
$\qquad$
$\qquad$
$\qquad$


EXAM PAPERS PRACTICE
(b) What algorithm does the procedure P describe?
$\qquad$
(c) What is the purpose of Flag in this procedure?
$\qquad$
$\qquad$

## Q12.

(a) The series of characters J, F, H, U, S, X, T are to be entered into a binary search tree in the order given. Draw a diagram to show how these values will be stored.
(b) The following data are held in arrays Data, $L$ and $R$ :


L

0
[3]
[4]
[5]
[6]
[7]
R
4
[1]
[1]
[2]
[3]
[
.

- $\square$
rex

0
[7]

Using the arrays above, dry-run the following pseudo-code by completing the trace table opposite:

```
Item \leftarrow 'T'
```

Ptr $\leftarrow 1$
WHILE Data[Ptr] $<>$ Item DO
PRINT Data[Ptr]
IF Data[Ptr] > Item
EXAM PAPERS PRACTICE
ELSE Ptr $\leftarrow \mathrm{R}[\mathrm{Ptr}]$
ENDIF
ENDWHILE
PRINT Data[Ptr]
Trace Table:

| Item | Ptr | Printed Output |
| :---: | :---: | :---: |
| 'T' | 1 | ' $J$ |
|  |  |  |
|  |  |  |
|  |  |  |

Q13.
(a) A unique numerical code, occupying a single byte, is generated for each key pressed on a computer's keyboard.
What is meant by a byte?
$\qquad$
(b) In one coding system, the character digits 0 to 9 are assigned the decimal number codes 48 to 57 and the letters $A$ to $Z$ the decimal number codes 65 to 90 . Which keys produce the following codes?
(i) 01000001 $\qquad$
(ii) 00111001 $\qquad$
(c) A number is entered at the keyboard as a sequence of character digits. This sequence is processed to convert the code representation into its decimal integer value using the following algorithm:

(Total 9 marks)

Q14.
(a) An example of an iteration in Pascal is:

FOR x : = 1 TO 10 DO writeln ('Hello');
In a high level programming language you are familiar with, using the correct syntax, give an example of:
(i) declaration; $\qquad$
(ii) assignment; $\qquad$
(iii) selection. $\qquad$
$\qquad$
(b) A one-dimensional array q contains the following characters:

(i) Dry run the following algorithm, recording your results in the diagram.

FOR pointer $\leftarrow 1$ to 5
s[pointer] $\leftarrow$ q[pointer]
END FOR
pointer1 $\leftarrow 1$


```
 pointer1 \leftarrow pointer1 + 1
 pointer2 \leftarrow pointer2 - 1
 UNTIL pointer2 = 0
```

| q |  |
| :---: | :---: |
| D | $[5]$ |
| K | $[4]$ |
| C | $[3]$ |
|  | $[2]$ |
| M | $[1]$ |


(ii) What is the purpose of the above algorithm?
$\qquad$

## Q15.

Players, in a national lottery, show their selection of different numbers by placing marks on an entry form similar to the one shown in Figure 1. The entry form is then inserted into a machine at the point of sale and the numbers are read.

## National Lottery Entry Form

Which

| draw? | $-1-$ | $-2-$ | $-3-$ | $-4-$ | $-5-$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Wed -- | $-6-$ | $-7-$ | $-8-$ | $-9-$ | $-10-$ |
|  | $-11-$ | $-12-$ | $-13-$ | $-14-$ | $-15-$ |

$$
\begin{array}{rccccc}
\text { Sat }-- & -16- & -17- & -18- & -19- & -20- \\
& -21- & -22- & -23- & -24- & -25-
\end{array}
$$

$$
\text { Both-- } \quad-26-\quad-27-\quad-28-\quad-29-\quad-30-
$$

$$
-31-\quad-32-\quad-33-\quad-34-\quad-35-
$$

$$
-36-\quad-37-\quad-38-\quad-39-\quad-40-
$$

$$
-41-\quad-42-\quad-43-\quad-44-\quad-45-
$$

$$
-46-\quad-47-\quad-48-\quad-49-
$$

Figure 1
(a) Name the method being used to read the data.
$\qquad$

The data are transmitted to a central computer which allocates a unique transaction code. This code is relayed back to the point of sale where a machine prints the chosen numbers and a transaction code onto the ticket similar to the one shown in Figure 2.

National Lottery Ticket

Transaction code
198-11926167-2420-4
$\begin{array}{llllllll}\text { Chosen Numbers } & 06 & 14 & 21 & 32 & 43 & 44\end{array}$

Wed 16 Aug 00
£ 1.00

Point of Sale No. 106320


198-11926167-2420-4

Figure 2
(b) Each transaction code includes a check digit. What is a check digit and why is it used?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) Each transaction is recorded in a separate record. All transaction records for a particular lottery draw are stored in a single transaction file.

The transaction record includes the following fields:
Date of Purchase
Date of Draw
Point of Sale Identification Code
Transaction Code
Chosen Numbers
(i) What is meant by primary key?
$\qquad$
$\qquad$
(ii) Which of the above fields should be chosen as the primary key?
$\qquad$

(iii) What would be a suitable file organisation for the transaction file if it is required that the ticket(s) with the winning numbers is to be found? Justify your

(iv) If individual records need to be accessed quickly what file organisation should be used? Justify your choice.
$\qquad$
$\qquad$
$\qquad$
(d) After a draw, some lottery prize-winners can check their tickets at any lottery point of sale machine. State the processing steps required by the lottery's computer system to check if the ticket is a winning ticket.
$\qquad$
$\qquad$
$\qquad$

## Q16.

The memory of a computer holds an array of records, each of which includes name, address and other information.

## (a) What condition is necessary for the binary search (binary chop) process to work correctly?

$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) Describe this process to find the position in the array of the record containing a given name.


EXAM PAPERS PRACTICE
$\qquad$
$\qquad$
(c) Why is this search method normally faster than a linear search?
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q17.

The plan below shows the layout of the Mass Transit Railway (MTR) in Hong Kong. The maintenance depot is at Mong Kok.

## Hong Kong Mass Transit Railway

(not to scale)


All the trains operate the same cycle (sequence) of journeys, given by the algorithm below. The algorithm is intended to ensure that:

1. trains are serviced as soon as possible after covering 135 km , and
2. each train will have travelled in both directions along each track at least once in the cycle.

## The algorithm relates to three arrays called station, journey and km. The contents of these arrays are shown below.

| Subscript | Station |
| :---: | :---: |
| 0 | Mong Kok depot (MK) |
| 1 | Tsuen Wan (TW) |
| 2 | Quarry Bay (QB) |
| 3 | Sheung Wan (SW) |
| 4 | Chai Wan (CW) |
| 5 | Hong Kong Central (HK) |


| Subscript | Journey |
| :---: | :---: |
| 0 | 3 |


| 1 | 4 |
| :---: | :---: |
| 2 | 3 |
| 3 | 1 |
| 4 | 5 |
| 5 | 3 |
| 6 |  |

The $6 \times 6$ two-dimensional array $\mathbf{k m}$, representing the distance between stations (in kilometres), contains

First subscript

| Second Subscript | km | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 22 | 28 | 15 | 36 | 12 |
|  | 1 | 22 | 0 | 50 | 37 | 58 | 34 |
|  | 2 | 28 | 50 | 0 | 43 | 64 | 40 |
|  | 3 | 15 | 37 | 43 | 0 | 27 | 3 |
|  | 4 | 36 | 58 | 64 | 27 | 0 | 24 |
|  | 5 | 12 | 34 | 40 | 3 | 24 | 0 |



```
n := n + 1
if (maintain = TRUE) then
n := last
totalkm := 0
maintain := FALSE
```


## endif

```
dest := journey [n]
if (totalkm > 135) then
 dest := 0
```

```
last := n
maintain := TRUE
```

```
endif
start := station[org]
finish := station[dest]
totalkm := totalkm + km[org, dest]
org := dest
 until n >= 6
```

    endwhile
    (a) What is the effect of the instructions while(TRUE) and endwhile?
$\qquad$
$\qquad$
(b) For each of the variables maintain and $n$, state with a reason what data type it should be.


## EXAM PAPERS PRACTICE

(c) Copy and complete the trace table below, for one iteration of the outer (while .... endwhile) loop.

| n | org | dest | last | Start | Finish | Totalkm | maintain | comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 |  |  |  |  |  |  |  |
|  |  |  | 1 |  |  |  |  |  |
|  |  | 3 |  |  |  |  | FALSE |  |
|  |  |  |  | MK |  |  |  |  |
|  |  |  |  |  | SW |  |  |  |
|  | 3 |  |  |  |  | 15 |  |  |
|  |  |  |  |  |  |  |  |  |

(d) An objective of the algorithm is that each train has travelled in both directions along every track at least once in the cycle. Using your trace table, state, with reasons, whether this objective has been achieved.
$\qquad$


Q18.
Data is held in a linked list. The array animals contain records with the content shown.

(a) Give the values that would be needed in the pointer field of each non-empty record to produce a list in alphabetical order. A pointer value of zero indicates the end of the list.
$\qquad$
$\qquad$
(b) The variables Start and Freestorage are used to point to the start of the list and the next free space, respectively. What values should they contain?
$\qquad$
$\qquad$
(c) Describe the steps needed to add "Monkey" to the list.

Q19.
The algorithm below shows a procedure called sort.
//numbers is a global array of integers
// max is a global integer holding the number of values to be sorted

```
XAMMPAPERS PRACTICE
 rp := 1
 repeat
```

            rp := rp+1
            \(\mathrm{cp}:=1\)
            while \(r p>c p\) do
                if numbers[rp] > numbers[cp] then
                    temp := numbers[rp]
                for count := rp to \(c p+1\) step - 1
                numbers[count] := numbers[count - 1]
            endfor
                numbers[cp] := temp
            endif
        \(\mathrm{cp}:=\mathrm{cp}+1\)
        endwhile
    until \(r p=\max\)
    endproc
(a) Using the column headings shown below, trace the algorithm for the procedure sort when the array numbers contains the values $13,25,24$ and $\max =3$.

| Comment | Count | rp | $\max$ | cp | temp | numbers |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 3 |  |  | 1 | 2 | 3 |
| Global <br> values on <br> call |  |  |  |  | 13 | 25 | 24 |  |

(b) Name the sort method used in the algorithm above.
$\qquad$
(c) Why would this method be inefficient if the array numbers contained 500 values?
$\qquad$
$\qquad$
$\qquad$


Q20.


The operating system of a computer network includes the following functions and procedures:

OpenScreen( ComputerName, Channel )
where ComputerName is a character string identifying a computer on the network, and
Channel is an integer identifying a communication channel.
This function opens a communication channel to the screen of the computer specified,and returns an integer, which is 0 if the function is successful, otherwise it returns one of various error codes.

SendCharacter( Char, Channel, $x, y$ )
where Char is a character, Channel identifies the communication channel, and the integer variables x and y are screen coordinates. This procedure sends a character to the screen of the other computer using the communication channel. It does not return a value.

CloseScreen( Channel ) closes the specified communication channel. It does not return a value.

InputText( Buffer ) accepts a string of characters from the keyboard, terminated by a carriage return (character code 13), and stores it in Buffer. It does not return a value.

A computer on the network is running a program, designed to enable the user to send messages to another computer user. Part of the program uses the following algorithm:

Array of characters: Msg[50]

Integer: Count, Err, Col, Row
Character: Ch

InputText ( Msg ) // uses carriage return, code 13, as terminator
Count $:=0$
Err := OpenScreen ( "Admin_Computer", 10 )
if ( Err = O ) then
Col := 1
Row := 12
Ch := "A"
while ( Ch does not contain the code 13 ) do Ch := Msg[ Count ] SendCharacter ( Ch, 10, Col, Row ) Count $:=$ Count +1 Col := Col + 1

## endwhile

CloseScreen ( 10 )
else
case ( Err) of
when 1: print( "Specified computer is offline or does not exist" )
when 2: print( "Cannot output - network interface problem"
)
when 3: print( "The network is down" )
endcase
endif
(a) What is meant by the term parameters? Illustrate your answer by using examples of the use of parameters from the algorithm above.

$\qquad$
(b) What is the benefit to the programmer of using parameters?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) How would the array Msg be stored?
$\qquad$
$\qquad$
(d) Describe in detail the operation of the while ... endwhile section of the algorithm.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(e) What is the effect of the case ... of ... endcase section of the algorithm?
$\qquad$

(f) The algorithm does not impose any limit on the length of the string the user inputs. What might happen if a string 60 characters long were entered?
$\qquad$

(Total 13 marks)

Q21.
(a) Draw a diagram to show the structure of a queue.
(b) Write an algorithm to show how a data item is added to a queue. Take into account
the possibility that the queue is full.

## Q22.

A routine for manipulating text strings uses the following pre-defined functions:
Len(q) returns the number of characters in the text string $q$;
Right $\$(\mathrm{q}, \mathrm{p})$ returns a string consisting of the last (rightmost) p characters of the string q ;
Left $\$(q, p)$ returns a string consisting of the first (leftmost) $p$ characters of the string $q$.
The algorithm for this routine is shown below.
YaAm MaPAPR PRACTICE
// main program
input message
newstring : = ""
output message
docharacter (message, newstring)
output newstring
// end of program
procedure docharacter(a,outstring) // both parameters passed by reference string: piece integer: x

```
 x : = Len(a)
 piece : = Right$(a,1)
 outstring : = outstring + piece
 x : = x - 1
 if }x>0\mathrm{ then
 a : = Left$(a,x)
 docharacter(a,outstring)
 endif
```

endproc

Trace the algorithm and show what is output if the word CAT is input.
$\qquad$
$\qquad$
$\qquad$
(Total 9 marks)

Q23.
A security system uses the control port shown below.


The system, if activated, must turn on the security light if external movement is detected.
The alarm must be turned on if either or both contacts are broken or if internal movement is detected.
(a) Give the masks and the logical operations needed for each of the following. In each case all other bits must remain unchanged.
(i) Testing the state of the external movement sensor.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) Turning on the alarm.
$\qquad$
$\qquad$
(b) Write an algorithm for the procedure required to check the sensors and contacts and to activate the alarm or security light when necessary.

## Q24.



The following section of pseudo-code processes a one-dimensional integer array called List. The numbers in List are stored in ascending order, and x, Low, High, Middle are all integer variables. (The function int returns the whole number part of its parameter.)
Proc Process (Low, High, x)


```
Middle \leftarrow Int((Low + High)/2)
If List(Middle) = x
 Then Found \leftarrow True
 Else If List(Middle) > x
 Then High }\leftarrow Middle -1
 Else Low \leftarrow Middle +1 {List(Middle) <x}
Until Found = True
```

(a) Complete the following dry-run table for Process (1, 10, 19), given that the integers in the list are:

$$
2,4,6,7,11,13,19,21,27,29
$$

| Low | High | Middle | Found |
| :---: | :---: | :---: | :---: |
| 1 | 10 |  |  |


|  |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |

(b) What type of routine does this pseudo-code define?
$\qquad$

## Q25.

Explain how the elements in a non-empty queue may be reversed with the aid of a stack.
$\qquad$




[^0]:    Ptr $\longleftarrow I$

