

Pure Mathematics: Binomial Expansion

	Name:
	Class:
	Date:
Time:	Duto.
Total marks available:	
Total marks achieved:	and the second
Edexcel IAL AS and A Levels Mathematics	
Sub Topic : Sequences and Series	
Type : Topic Questions	
INTERNATIONAL ADVANCED LEVEL	
EDEXCEL INTERNATIONAL GCSE	
ECONOMICS/ Danale Concernation	
FURTHER MATHEMATICS/	
SPECIFICATION	
Edexcel International Advanced Subsidiary in Mathematics (XMA01) Edexcel International Advanced Subsidiary in Further Mathematics (XFM01)	
Edexcel International Advanced Subsidiary in Pure Mathematics (XPM01)	
Edexcel International Advanced Level in Further Mathematics (YFM01)	
Edexcel International Advanced Level in Pure Mathematics (YPM01)	
First examination June	

To be used by all students preparing for Edexcel IAL AS and A Levels Mathematics

Students of other boards may also find this useful

Q1.

A curve C has equation y = f(x) where

 $f(x) = (2 - kx)^5$

and k is a constant.

Given that when f(x) is divided by (4x - 5) the remainder is $\frac{243}{32}$

(a) show that $k = \frac{2}{5}$

(2)

(3)

(Total for question = 7 marks)

(b) Find the first three terms, in ascending powers of x, of the binomial expansion of

 $\left(2-\frac{2}{5}x\right)^2$

Exam Papers Practice

giving each term in simplest form.

Using the solution to part (b) and making your method clear,

(c) find the gradient of C at the point where x = 0

Use the binomial series to find the expansion of

$$\frac{1}{(2+5x)^3}$$
 $|x| < \frac{2}{5}$

in ascending powers of x, up to and including the term in x^3

Give each coefficient as a fraction in its simplest form.

(Total for question = 6 marks)

Q3.

(a) Find the first four terms, in ascending powers of x, of the binomial expansion of

$$\left(2-\frac{1}{4}x\right)^{6}$$

(4)

(b) Given that x is small, so terms in x^4 and higher powers of x may be ignored, show

$$\left(2 - \frac{1}{4}x\right)^6 + \left(2 + \frac{1}{4}x\right)^6 = a + bx^2$$

where a and b are constants to be found.

(3)

(Total for question = 7 marks)

Exam Papers Practice

Q4.

(a) Find the first 4 terms, in ascending powers of x, in the binomial expansion of

$$\left(1+\frac{x}{4}\right)^{12}$$

giving each coefficient in its simplest form.

(3)

(b) Find the term independent of x in the expansion of

$$\left(\frac{x^2+8}{x^5}\right)\left(1+\frac{x}{4}\right)^{12}$$

(3)

(Total for question = 6 marks)

Q5.

Q6.

One of the terms in the binomial expansion of $(3 + \alpha x)^6$, where α is a constant, is $540x^4$

 $\left(\frac{1}{81} + \frac{1}{x^6}\right)(3 + ax)^6$

(a) Find the possible values of α .

(b) Hence find the term independent of x in the expansion of

(Total for question = 7 marks) (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of ctice $2-\frac{x}{4}$ 10

giving each term in its simplest form.

(4)

(4)

(3)

(b) Hence find the constant term in the series expansion of

$$\left(3 - \frac{1}{x}\right)^2 \left(2 - \frac{x}{4}\right)^{10}$$

(3)

(Total for question = 7 marks)

Q7.

(a) Use the binomial expansion to expand

$$(4-5x)^{-\frac{1}{2}}$$
 $|x| < \frac{4}{5}$

in ascending powers of x, up to and including the term in x^2 giving each coefficient as a fully simplified fraction.

$$f(x) = \frac{2+kx}{\sqrt{4-5x}}$$
 where k is a constant and $|x| < \frac{4}{5}$

Given that the series expansion of f(x), in ascending powers of x, is

$$1 + \frac{3}{10}x + mx^2 + \dots$$
 where *m* is a constant

(b) find the value of k,

(Total for question = 6 marks)

Q8.

(a) Find the first three terms, in ascending powers of x, of the binomial expansion of

 $(2 + px)^{6}$

where p is a constant. Give each term in simplest form.

Given that in the expansion of

(4)

 $\left(3 - \frac{1}{2}x\right)\left(2 + px\right)^6$

the coefficient of x^2 is $-\frac{3}{4}$

(b) find the possible values of *p*.

(4)

Q9.

(a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of

giving each coefficient in its simplest form. Example papers Practice (5)

By substituting $x = \frac{1}{100}$ into the answer for (a),

(b) find an approximation for $\sqrt{5}$

Give your answer in the form $\frac{a}{b}$ where *a* and *b* are integers to be found.

(2)

(Total for question = 7 marks)

(4)

Q10.

(a) Find, in ascending powers of x, up to and including the term in x^3 , the binomial expansion of

$$\left(2+\frac{x}{8}\right)^{13}$$

fully simplifying each coefficient.

(b) Use the answer to part (a) to find an approximation for 2.0125¹³ Give your answer to 3 decimal places. (3) Without calculating 2.0125¹³ (c) state, with a reason, whether the answer to part (b) is an overestimate or an underestimate. (1) (1) (Total for question = 8 marks) Q11. Given that k is a constant and the binomial expansion of $\sqrt{1 + kx}$ |kx| < 1in ascending powers of x up to the term in x^3 is $1 + \frac{1}{8}x + Ax^2 + Bx^3$

(a) (i) find the value of k,

(ii) find the value of the constant A and the constant B.

(5)

(b) Use the expansion to find an approximate value to $\sqrt{1.15}$

Show your working and give your answer to 6 decimal places.

(Total for question = 7 marks)

Q12.

The first three terms, in ascending powers of x, of the binomial expansion of $(1 + kx)^{16}$ are

1, -4x and px^2

where *k* and *p* are constants.

- (a) Find, in simplest form,
- (i) the value of k
- (ii) the value of p

 $g(x) = \left(2 + \frac{16}{x}\right) \left(1 + kx\right)^{16}$

(3)

Using the value of k found in part (a),

(b) find the term in x^2 in the expansion of g(x).

Exam Papers Practice⁽³⁾

(Total for question = 6 marks)

Q13.

$$f(x) = \sqrt{1 - 4x^2}$$
 $|x| < \frac{1}{2}$

(a) Find, in ascending powers of x, the first four non-zero terms of the binomial expansion of f(x). Give each coefficient in simplest form.

(4)

(b) By substituting x =

 $\frac{1}{4}$ into the binomial expansion of f(x), obtain an approximation for $\sqrt{3}$

Give your answer to 4 decimal places.

1

(2)

(Total for question = 6 marks)

Q14.

(a) Find the first 4 terms, in ascending powers of *x*, of the binomial expansion of

$$\left(2-\frac{kx}{4}\right)^8$$

where k is a non-zero constant. Give each term in simplest form.

(4)

$$f(x) = (5 - 3x) \left(2 - \frac{kx}{4}\right)^8$$

In the expansion of f(x), the constant term is 3 times the coefficient of x. (b) Find the value of k. (3)

(Total for question = 7 marks)

Q15.

Find the first four terms, in ascending powers of x, of the binomial expansion of

$$\left(2+\frac{3}{8}x\right)^{10}$$

Give each coefficient as an integer.

(Total for question = 4 marks)

Q16.

(a) Find, in ascending powers of x, the first three non-zero terms of the binomial series expansion of

017.

$$g(x) = \frac{1}{\sqrt{4 - x^2}}$$

(a) Find, in ascending powers of x, the first four non-zero terms of the binomial expansion of g (x). Give each coefficient in simplest form.

(5)

(b) State the range of values of *x* for which this expansion is valid.

- (1)
- (c) Use the expansion from part (a) to find a fully simplified rational approximation for $\sqrt{3}$

Show your working and make your method clear.

(2)

(Total for question = 8 marks)

Q18.

The binomial expansion of

 $(3 + kx)^{-2}$ |kx| < 3

where k is a non-zero constant, may be written in the form

(ii) find the value of D

(3)

(Total for question = 7 marks)