
 EXAM PAPERS PRACTICE

3D Pythagoras \& SOHCAHTOA
 Model Answer

The diagram shows a rectangular playground $A B C D$ on horizontal ground. A vertical flagpole $C F, 6$ metres high, stands in corner C. $A B=18 \mathrm{~m}$ and $B C=15 \mathrm{~m}$.

Calculate the angle of elevation of F from A.

1. Draw a right triangle AFC, where A is the observer, F is the flagpole, and C is the foot of the flagpole.
2. Label the sides of the triangle as follows:

- $\mathrm{AF}=6 \mathrm{~m}$ (height of the flagpole)
- $A C=18 \mathrm{~m}$ (length of side $A B$)
- $\mathrm{FC}=15 \mathrm{~m}$ (length of side BC)

3. Use the tangent function to calculate the angle of elevation:
$\tan ($ theta $)=\mathrm{AF} / \mathrm{AC}=6 / 18=1 / 3$
theta $=\arctan (1 / 3)=18.43$ degrees
Therefore, the angle of elevation of F from A is 18.43 degrees.

The diagram shows a pyramid with a square base $A B C D$.
All the sloping edges of the pyramid are 20 cm long and $A C=17 \mathrm{~cm}$.

NOT TO
SCALE

Calculate the height of the pyramid.

$$
a^{2}+b^{2}=c^{2}
$$

This triangle is a proper triangle, so we have:

$$
\begin{aligned}
& h^{2}+8.5^{2}=20^{2} \\
& h^{2}+72.25=400 \\
& h^{2}=327.75 \\
& \mathrm{~h}=18.1 \mathrm{~cm}
\end{aligned}
$$

Exam

P apers

Practice

The diagram shows a pyramid on a square base $A B C D$ with diagonals, $A C$ and $B D$, of length 8 cm . $A C$ and $B D$ meet at M and the vertex, P, of the pyramid is vertically above M.
The sloping edges of the pyramid are of length 6 cm .

Calculate
(a) the perpendicular height, $P M$, of the pyramid,

The perpendicular height, PM , of the pyramid is 6 cm .
This can be seen from the diagram, as the right triangle PME is a $45-45-90$ triangle, so $P M=M E=6 \mathrm{~cm}$.
Exam Papers Practice
(b) the angle between a sloping edge and the base of the pyramid.

The angle between a sloping edge and the base of the pyramid in the image is 60 degrees.

NOT TO
SCALE

The diagram shows a pyramid on a square base $A B C D$.
The diagonals of the base, $A C$ and $B D$, intersect at M.
The sides of the square are 8 cm and the vertical height of the pyramid, $P M$, is 5 cm .

Calculate

(a) the length of the edge $P B$,
(b) the angle between $P B$ and the base $A B C D$.
(a) Because the bottom $A B C D$ is a square so $A C \perp B D \quad A C=B D, \quad \angle A B C=90^{\circ}$ in a right triangle $\triangle A B C$ 值e diagonal property of
$A C=\sqrt{A B^{2}+B C^{2}}=\sqrt{8^{2}+8^{2}}=8 \sqrt{2}$
so $B M=\frac{1}{2} B D=\frac{1}{2} A C=\frac{1}{2} \times 8 \sqrt{2}=4 \sqrt{2}$
a square\}]
according to the problem, we know that $P M$ is the vertical line of the pyramid.
So $P M \perp$ bottom $A B C D$.
$P M \perp B M$ \{properties of the vertical plane\} to sum up in conclusion, in a right triangle $\triangle P M B$
$P B=\sqrt{P m^{2}+B m^{2}}=\sqrt{5^{2}+(4 \sqrt{2})^{2}}=\sqrt{25+32}=\sqrt{57}$
\{the Puthagorean theorem\}
(b) $P M \perp$ bottom $A B C D$
so the angle between $P B$ and the base $A B C D$ is 90° \{properties of the vertical plane\}

EXAM PAPERS PRACTICE

NOT TO
SCALE

The diagram represents a pyramid with a square base of side 10 cm .
The diagonals $A C$ and $B D$ meet at $M . P$ is vertically above M and $P B=8 \mathrm{~cm}$.
(a) Calculate the length of $B D$.

$$
\begin{aligned}
B D & =10 \sqrt{2} \mathrm{~cm} \\
B D^{2} & =A B^{2}+A D^{2} \\
& =10^{2}+10^{2} \\
& =200 \\
B D & =\sqrt{200}=10 \sqrt{2}(\mathrm{~cm})
\end{aligned}
$$

(b) Calculate $M P$, the height of the pyramid.

$$
\begin{aligned}
P M^{2} & =P B^{2}-B M^{2} \\
& =64-50 \\
& =14 \\
P M & =\sqrt{14}
\end{aligned}
$$

NOT TO
SCALE

The diagram shows a prism of length 4 cm .
The cross section is a right-angled triangle.
$B C=3 \mathrm{~cm}$ and $C Q=2 \mathrm{~cm}$.
Calculate the angle between the line $A Q$ and the base, $A B C D$, of the prism.

Connect the $A C$
$\because A B=4 \mathrm{~cm}, \quad A C=3 \mathrm{~cm}$
$\therefore A C=5 \mathrm{~cm}$
$\because Q C=2 \mathrm{~cm}$ The cross section is a right-agled triangle. Let's say the angle is m.
$\therefore \tan m=\frac{Q C}{A C}=\frac{2}{5}$
$\therefore m=\arctan \frac{2}{5}+n \pi \quad$ \{use the inverse property \}
So $m=21.8014^{\circ}$

The diagram shows a cuboid $A B C D E F G H$. $A E=5 \mathrm{~cm}, E H=4 \mathrm{~cm}$ and $A G=13 \mathrm{~cm}$.

Calculate the angle between the line $A G$ and the base $E F G H$ of the cuboid.

$$
\begin{aligned}
& A E H G^{2}=A E^{2}+E H^{2} \\
& A E H G^{2}=5^{2}+4^{2} \\
& A E H G^{2}=41 \\
& A E H G=\sqrt{41}
\end{aligned}
$$

$\cos (\theta)=\frac{A E}{\sqrt{41}}$
$\cos (\theta)=\frac{5}{\sqrt{41}}$
$\theta=\cos ^{-1}\left(\frac{5}{\sqrt{41}}\right)$
$\theta \approx 135^{\circ}$
Therefore, the angle between the line AG and the base EFGH of the cuboid is 135 degrees.

The diagram shows a cube $A B C D E F G H$ of side length 26 cm .

Calculate the angle between $A G$ and the base of the cube.

We know that $G C$ is perpendicular to the base.
Thus, the angle between $A G$ and the base of the cube is $\angle G A C$
$G C=26 \mathrm{~cm}$
$A C=\sqrt{A B^{2}+B C^{2}}$
$=\sqrt{26^{2}+26^{2}} \mathrm{~cm}$
$=26 \sqrt{2} \mathrm{~cm}$
$\tan \angle G A C=\frac{G C}{A C}=\frac{26 \mathrm{~cm}}{26 \sqrt{2} \mathrm{~cm}}=\frac{\sqrt{2}}{2}$
$\angle G A C=\arctan \frac{\sqrt{2}}{2}$
$=35.26^{\circ}\{$ simplify $\}$

NOT TO
SCALE

The diagram shows a cube of side length 8 cm .
(a) Calculate the length of the diagonal $B S$.

$$
\begin{aligned}
B D & =\sqrt{8^{2}+8^{2}} \quad\left\{B D^{2}=A D^{2}+A B^{2}\right\} \\
& =8 \sqrt{2} \mathrm{~cm} \\
B S & =\sqrt{(8 \sqrt{2})^{2}+8^{2}} \\
& =\sqrt{64+128} \\
& =8 \sqrt{3} \mathrm{~cm}
\end{aligned}
$$

(b) Calculate angle $S B D$.

$$
\begin{aligned}
\sin \angle S B D & =\frac{S D}{B S} \\
& =\frac{8}{8 \sqrt{3}} \\
& =\frac{\sqrt{3}}{3} \\
\therefore M \angle S B D & =30^{\circ} \quad\left\{0<\angle S B D<90^{\circ}\right\}
\end{aligned}
$$

NOT TO
SCALE

The diagram shows a cuboid.
$H D=3 \mathrm{~cm}, E H=5 \mathrm{~cm}$ and $E F=7 \mathrm{~cm}$.

Calculate

(a) the length $C E$,

$$
\begin{aligned}
& C H=\sqrt{D H^{2}+H G^{2}}=\sqrt{58} \mathrm{~cm} \\
& E C=\sqrt{C H^{2}+E H^{2}}=\sqrt{83} \mathrm{~cm}
\end{aligned}
$$

(b) the angle between $C E$ and the base $C D H G$.

The angle between CE and the base CDHG is 60 degrees.

