

 EXAM PAPERS PRACTICE

 EXAM PAPERS PRACTICE}
3D Areas \& Volume
 Model Answer

The diagram shows a channel for water.
The channel lies on horizontal ground.
This channel has a constant rectangular cross section with area $0.95 \mathrm{~m}^{2}$.
The channel is full and the water flows through the channel at a rate of 4 metres/minute.
Calculate the number of cubic metres of water that flow along the channel in 3 hours.

Exam
Papers
Practice ${ }^{\text {B }}$

NOT TO
SCALE

The diagram shows a wooden prism of height 5 cm .
The cross section of the prism is a sector of a circle with sector angle 25°.
The radius of the sector is 15 cm .
Calculate the total surface area of the prism.

Find the sector angle in radians
$\mathrm{a}=25 \times(\pi / 180)$
$\mathrm{a}=(25 \pi) /(180) \mathrm{rad}$
Find the area of the prism:
$A=2 \times 15 \times 5+15 \times 15 \times \alpha+5 \times 15 \times \alpha$
$A=150+15 \times 15 \times(25 \pi) /(180)+5 \times 15 \times(25 \pi) /(180)$
$A=280.890 \mathrm{~cm}^{2}$

The diagram shows a solid hemisphere.

The total surface area of this hemisphere is 243π.
The volume of the hemisphere is $k \pi$.

Find the value of k.
[The surface area, A, of a sphere with radius r is $A=4 \pi r^{2}$.]
[The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]
according to the known:
$243 \pi=4 \pi r^{2}$
$243=4 r^{2}$
$r^{2}=\frac{243}{4}$
$r= \pm \frac{9 \sqrt{3}}{2}$
$\because r>0$
$\therefore r=\frac{9 \sqrt{3}}{2}$
$v=\frac{4}{3} \pi r^{3}=k \pi$
Exam

$\frac{4}{3} r^{3}=k$
$\frac{4}{3} \times\left(\frac{9 \sqrt{3}}{2}\right)^{3}=k$
$\frac{4}{3} \times \frac{2187 \sqrt{3}}{8}=k$
$k=\frac{729 \sqrt{3}}{2}$

A hemisphere has a radius of 12 cm .

Calculate its volume.
[The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]

[2]

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \times \frac{1}{2} \\
& =\frac{2}{3} \pi(12)^{3} \\
& =1152 \pi \mathrm{~cm}^{3} .
\end{aligned}
$$

Exam

A water pipe has a circular cross section of radius 0.75 cm .
Water flows through the pipe at a rate of $16 \mathrm{~cm} / \mathrm{s}$.
Calculate the time taken for 1 litre of water to flow through the pipe.
$0.001 \mathrm{~m}^{3}=\pi(0.75 \mathrm{~m})^{2}(0.16 \mathrm{~m} / \mathrm{s}) t$
Solving for t, we get:
$t=\frac{0.001 \mathrm{~m}^{3}}{\pi(0.75 \mathrm{~m})^{2}(0.16 \mathrm{~m} / \mathrm{s})} \approx 35.3 \mathrm{~s}$

Exam

Practice

The diagram shows a solid prism of length 15 cm .
The cross section of the prism is the trapezium $A B C D$.
Angle $D A B=$ angle $C D A=90^{\circ}$.
$A B=9 \mathrm{~cm}, D C=6 \mathrm{~cm}$ and $A D=4 \mathrm{~cm}$.
Calculate the total surface area of the prism.
The length of the prism $L=15 \mathrm{~cm}$
Now, cross section of the prism is the trapezium ABCD
And, $\angle \mathrm{DAB}=\angle \mathrm{CDA}=90^{\circ}$
The measure of sides of the prism are
$\mathrm{AB}=9 \mathrm{~cm}$
$\mathrm{DC}=6 \mathrm{~cm}$
And, $\mathrm{AD}=4 \mathrm{~cm}$
Now, total surface area of prism is $A=2 B+p h$
On simplifying, we get
$\mathrm{S}_{1}=(1 / 2)(6+9)(4 \times 2)+(6 \times 15)+(4 \times 15)+(9 \times 15)$
$\mathrm{S}_{1}=345 \mathrm{~cm}^{2}$
Now, the perpendicular CE to $A B$ is drawn and
$\mathrm{DC}=\mathrm{AE}=6 \mathrm{~cm}$
And, $\mathrm{BE}=\mathrm{AB}-\mathrm{AE}=3 \mathrm{~cm}$
$\mathrm{BC}^{2}=\mathrm{CE}^{2}+\mathrm{BE}^{2}$
On simplifying, we get
$\mathrm{BC}=5 \mathrm{~cm}$
$\mathrm{S}_{2}=5 \times 15=75 \mathrm{~cm}^{2}$
So, the total surface area $S=S_{1}+S_{2}=420 \mathrm{~cm}^{2}$
Hence, the surface area of prism is $S=420 \mathrm{~cm}^{2}$

NOT TO
SCALE

The sphere of radius r fits exactly inside the cylinder of radius r and height $2 r$. Calculate the percentage of the cylinder occupied by the sphere.
[The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]
According to the topic
$V_{\text {cylinder }}=s h=\pi r^{2} \cdot 2 r=2 \pi r^{3}$
$V_{\text {sphere }}=\frac{4}{3} \pi r^{3}$
$\frac{V_{\text {sphere }}}{V_{\text {cylinder }}}=\frac{\frac{4}{3} \pi r^{3}}{2 \pi r^{3}}=\frac{2}{3}$

Exam Papers Practice

The diagram shows a sand pit in a child's play area.
The shape of the sand pit is a sector of a circle of radius 2.25 m and sector angle 56°.
(a) Calculate the area of the sand pit.

$$
\frac{56}{2 \times 80} \cdot \pi \cdot(2.25)^{2}=\frac{63}{80} \pi \mathrm{~m}^{2}
$$

(b) The sand pit is filled with sand to a depth of 0.3 m .

Calculate the volume of sand in the sand pit.

$$
v=A \cdot h=\frac{63}{80} \pi \times 0.3=\frac{189}{800} \pi \mathrm{~m}^{3}
$$

NOT TO
SCALE

The diagram shows a glass, in the shape of a cone, for drinking milk.
The cone has a radius of 6 cm and height 15 cm .
A bottle of milk holds 2 litres.
(a) How many times can the glass be completely filled from the bottle?
[The volume, V, of a cone with radius r and height h is $V=\frac{1}{3} \pi r^{2} h$.]

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h \\
&=\frac{1}{3} \pi 6^{2} \cdot 15 \\
&=\frac{1}{3} \pi 36 \cdot 15 \\
&=565.2 \mathrm{~cm}^{3} \\
& 2 L=2000 \mathrm{~mL} \\
& 2000 \div 565.2 \approx 3.5
\end{aligned}
$$

The glass be completely filled from the bottle 3 times

(b) Calculate the volume of milk left in the bottle. Give your answer in cm^{3}.

The volume of millk
left in the bottle.
$2000-180 \pi \times 3=303.54\left(\mathrm{~cm}^{3}\right)$

A solid cone has base radius 4 cm and height 10 cm .
A mathematically similar cone is removed from the top as shown in the diagram. The volume of the cone that is removed is $\frac{1}{8}$ of the volume of the original cone.
(a) Explain why the cone that is removed has radius 2 cm and height 5 cm .

Volume of a cone: $\frac{1}{3} \pi R^{2} h$
$=\frac{1}{3} \times 16 \times 10 \times 3.14=167.4$
Small cone: $167.4 \times \frac{1}{8}=20.925$
$\frac{1}{3} \times 4 \times 5 \times 3.14=20.1$
-

(b) Calculate the volume of the remaining solid.
[The volume, V, of a cone with radius r and height h is $V=\frac{1}{3} \pi r^{2} h$.]
$167.4-20.925=146.475$

The diagram shows the entrance to a tunnel.
The circular arc has a radius of 3 m and centre O.
$A B$ is horizontal and angle $A O B=120^{\circ}$.

During a storm the tunnel filled with water, to the level shown by the shaded area in the diagram.
(a) Calculate the shaded area.

The shaded area is $3 \mathrm{~m}^{2}$.

Exam Papers Practice
(b) The tunnel is 50 m long.

Calculate the volume of water in the tunnel.

The volume of water in the tunnel is 50 cubic meters.

A water pipeline in Australia is a cylinder with radius 0.65 metres and length 85 kilometres.
Calculate the volume of water the pipeline contains when it is full.
Give your answer in cubic metres.

The volume of the water pipeline is 35912.5π cubic meters.

Exam
Pepers
Practice

NOT TO
SCALE

The diagram shows a solid prism of length 15 cm .
The cross-section of the prism is a semi-circle of radius 4 cm .
Calculate the total surface area of the prism.

The total surface area of the prism is 76π square cm .

A cylinder has a height of 12 cm and a volume of $920 \mathrm{~cm}^{3}$.
Calculate the radius of the base of the cylinder.
$920 \mathrm{~cm}^{3}=\pi r^{2} \cdot 12 \mathrm{~cm}$
Dividing both sides by 12 cm and simplifying, we get:
$77 \mathrm{~cm}^{2}=\pi r^{2}$
Dividing both sides by π, we get:
$24.67 \mathrm{~cm}=r^{2}$
Taking the square root of both sides, we get:
$r=4.94 \mathrm{~cm}$
Therefore, the radius of the base of the cylinder is 4.94 cm .

The diagram shows a pyramid with a square base $A B C D$ of side 6 cm .
The height of the pyramid, $P M$, is 4 cm , where M is the centre of the base.
Calculate the total surface area of the pyramid.

The total surface area of the pyramid is the sum of the areas of the lateral faces and the base, which is equal to $48 \mathrm{~cm}^{2}+36 \mathrm{~cm}^{2}=84 \mathrm{~cm}^{2}$.
Exam Papers Practice

NOT TO
SCALE

The diagram shows a square-based pyramid $A B C D E$.
The diagonals of the square meet at M.
E is vertically above M. $A B=B C=12 \mathrm{~cm}$ and $E M=9 \mathrm{~cm}$.

Calculate the angle between the edge $E C$ and the base, $A B C D$, of the pyramid.

To find the angle between $E C$ and the base $A B C D$, we can use right triangle $E C D$.
$C E=15 \mathrm{~cm}$ and $E D=12 \mathrm{~cm}$. Using the tangent function, we can find that $\theta=\tan ^{-1}\left(\frac{4}{5}\right) \approx 38.9^{\circ}$.
Exam Papers Practice

Calculate the volume of a hemisphere with radius 3.2 cm .
[The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]
$V=68.63 \mathrm{~cm}^{9}$
Step-by-step explanation:
the volume (V) of a sphere is calculated as
$\mathrm{V}=\frac{4}{3} \pi r^{3}$
the volume of a hemisphere is half the volume of a sphere, so $V=\frac{1}{2} \times \frac{4}{3} \pi r^{3}=\frac{2}{3} \pi r^{3}$, then

$$
\begin{aligned}
V & =\frac{2}{3} \Pi \times 3.2^{9} \\
& =\frac{2}{3} \Pi \times 32.768 \\
& =68.63 \mathrm{~cm}^{9}(\text { to } 2 \text { dec. places })
\end{aligned}
$$

Question 18

The diagram shows a hemisphere with diameter 5 cm .
Calculate the volume of this hemisphere.
[The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$]
diameter $=5 \mathrm{~cm}$

$$
\begin{aligned}
\Rightarrow \text { radius } r & =\frac{5}{2} \mathrm{~cm} \\
\Rightarrow \text { volume } & =\frac{2}{3} \pi r^{3} \\
& =\frac{2}{3} \times 3.14 \times\left(\frac{5}{2}\right)^{3} \\
& =\frac{z}{3} \times 3.14 \times \frac{125}{4} \\
& =\frac{3.14 \times 125}{12} \\
& =32.71 \mathrm{~cm}^{3}
\end{aligned}
$$

(a)

NOT TO
SCALE

Triangle $A B C$ is an isosceles triangle with $A B=C B$.
Angle $A B C=44^{\circ}$.
Find angle $A C B$.
$\angle A C B=\angle C A B$
Sum of angle in a triagle $=180^{\circ}$
$m \angle A C B+m \angle A C B+m \angle A B C=180^{\circ}$
$2 m \angle A C B+44^{\circ}=180^{\circ}$
$2 m \angle A C B=180^{\circ}-44^{\circ}=136^{\circ}$
$m \angle A C B=\frac{136^{\circ}}{2}=68^{\circ}$
(b) A regular polygon has an exterior angle of 40°.

Work out the number of sides of this polygon.
Practi
$140 n=(2 n-4) 90^{\circ}=180 \mathrm{n}-360^{\circ}$
$360^{\circ}=180 n-140 n=40 n$
$n=\frac{360}{40}$
$\because n=9$

Calculate the volume of a hemisphere with radius 5 cm .
[The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]

$$
\begin{aligned}
V & =\frac{4}{3} \pi \times 5^{3} \\
& =\frac{4}{3} \pi \times 125 \\
& =\frac{500}{3} \pi=523.6 \mathrm{~cm}^{3}
\end{aligned}
$$

Exam

Practice
(a)

NOT TO SCALE
$25: 15=\frac{25}{15}=\frac{5}{3}=5: 3$
so, $\frac{5}{3}=\frac{x}{7.2}$ or, $x=\frac{5 \times 7.2}{3}=12 \mathrm{~cm}$
The diagram shows two jugs that are mathematically similar.
Find the value of x.

The diagram shows two glasses that are mathematically similar.
The height of the larger glass is 16 cm and its volume is $375 \mathrm{~cm}^{3}$.
The height of the smaller glass is $y \mathrm{~cm}$ and its volume is $192 \mathrm{~cm}^{3}$.
Find the value of y.
The height of the smaller glass is 8.19 cm .

The diagram shows a toy.
The shape of the toy is a cone, with radius 4 cm and height 9 cm , on top of a hemisphere with radius 4 cm .
Calculate the volume of the toy.
Give your answer correct to the nearest cubic centimetre.
[The volume, V, of a cone with radius r and height h is $V=\frac{1}{3} \pi r^{2} h$.]
[The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]

The volume of the toy is $285 \mathrm{~cm}^{\wedge} 3$.

Exam
 Papers

The diagram shows a solid pyramid on a square horizontal base $A B C D$.
The diagonals $A C$ and $B D$ intersect at M.
P is vertically above M.
$A B=20 \mathrm{~cm}$ and $P M=8 \mathrm{~cm}$.
Calculate the total surface area of the pyramid.

The total surface area of the pyramid is 720 square cm .

The base of a rectangular tank is 1.2 metres by 0.9 metres.
The water in the tank is 53 centimetres deep.
Calculate the number of litres of water in the tank.

The tank can hold 572.4 liters of water.

The diagram shows a child's toy.

NOT TO
SCALE

The shape of the toy is a cylinder of radius 5 cm and height 8 cm on top of a hemisphere of radius 5 cm .

Calculate the volume of the toy.
[The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]

The volume of the toy is $850 \pi / 3$ cubic cm .

