F司

EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

3.9 Vector Properties

AA HL

3.9.1 Introduction to Vectors

Scalars \& Vectors

What arescalars?

- Scalars are quantities without direction
- They have only a size (magnitude)
- Forexample:speed, distance,time, mass
- Most scalar quantities can never be negative
- Youcannot have a negative speed ordistance

What are vectors?

- Vectors are quantities which also have a direction, this is what makes them more than just a scalar
- For example: two objects with velocities of $7 \mathrm{~m} / \mathrm{s}$ and $-7 \mathrm{~m} / \mathrm{s}$ are travelling at the same speed but in opposite directions
- A vector quantity is described bybothits magnitude and direction
- A vector has components in the direction of the $x-, y$-, and z-axes
- Vector quantities can have positive ornegative components
- Some examples of vector quantities you maycome across are displacement, velocity,
acceleration, force/weight, momentum
- Displacement is the position of an object from a starting point
- Velocity is a speed in a given direction (displacement overtime)
- Accelerationis the change in velocity over time
- Vectors maybe given in either2-or3-dimensions

(-) Exam Tip

- Make sure you fully understand the definitions of all the words in this section so that you can be clear about what your exam question is asking of you

Worked example

State whether each of the follow wing is a scalar or a vector quantity.
a) A speed bo at travels at $3 \mathrm{~m} / \mathrm{s}$ on a bearing of 052°

Speed with a given direction \rightarrow velocity
Vector
b) Agardenis 1.7 m wide

c) Adar accelerates forwards at $5.4 \mathrm{~ms}^{-2}$

Acceleration has direction

Vector

d) A film lasts 2 hours 17 minutes

Time has no direction
© 2024 Exam Papers

Scalar

e) An athlete runs at an average speed of $10.44 \mathrm{~ms}^{-1}$

Speed with no direction is a scalar

Scalar

f) A ball rolls forwards 60 cm before stopping Displacement has direction

Vector Notation

How are vectors represented?

- Vectors are usually represented using an arrow in the direction of movement
- The length of the arrow represents its magnitude
- They are written as lowercase letters either in bold or underlined
- For example a vector from the point O to A will be written a ora
- The vectorfrom the point A to O will be written -a or-a
- If the start and end point of the vector is known, it is written using the se points as capital letters with an arrow showing the direction of movement
- For example: $\overrightarrow{\mathrm{AB}}$ or $\overrightarrow{\mathrm{BA}}$
- Two vectors are equal only if theircorresponding components are equal
- Numerically, vectors are either represented using column vectors orbase vectors
- Unless otherwise indicated, you may carry out all working and write your answers in either of these two types of vector notation

What are column vectors?

- Column vectors are where one number is written above the other enclosed in brackets
- In 2-dimensions the top number represents movement in the horizontal direction(right/left) and the bottom number represents movement in the vertical direction(up/down)
- A positive value represents movement in the positive direction(right/up) and a negative value represents movement in the negative direction (left/down)
- For example:The column vector $\binom{3}{-2}$ represents 3 units in the positive horizontal (x) direction (i.e., right) and 2 units in the negative vertical (y) direction (i.e., down)
- In 3-dimensions the top number represents the movement in the \boldsymbol{x} direction (length), the middle number represents movement in the \boldsymbol{y} direction (width) and the bottom number represents the movement in the \boldsymbol{z} direction (depth)
- Forexample:The column vector $\left(\begin{array}{r}3 \\ -4 \\ 2\end{array}\right)$ represents 3 units in the positive x direction, 4 units
in the negative y direction and $\mathbf{2}$ units in the positive \boldsymbol{z} direction

What are base vectors?

- Base vectors use \mathbf{i}, \mathbf{j} and \mathbf{k} notation where \mathbf{i}, \mathbf{j} and \mathbf{k} are unit vectors in the positive x, y, and z directions respectively
- This is sometimes also called unit vector notation
- A unit vector has a magnitude of 1
- In 2-dimensions irepresents movement in the horizontal direction(right/left) and jrepresents the movement in the vertical direction (up/down)
- For example:The vector $(-4 \mathbf{i}+3 \mathbf{j})$ would mean 4 units in the negative horizontal (x) direction (i.e., left) and 3 units in the positive vertical (y) direction (i.e., up)
- In 3-dimensions irepresents movement in the x direction (length), j represents movement in the y direction (width) and k represents the movement in the z direction (depth)
- For example: The vector $(-4 \mathbf{i}+3 \mathbf{j}-\mathbf{k})$ would mean 4 units in the negative \boldsymbol{x} direction, 3 units in the positive y direction and 1 unit in the negative z direction
- As they are vectors, \mathbf{i}, \mathbf{j} and \mathbf{k} are displayed in bold in textbooks and online but in hand writing they wo uld be underlined (i, j and k)

Exam Papers Practice
© 2024 Exam Papers Practice

Exam Papers Practice

Exam Papers Practice

Yo 7 UNITS DOWN

(-) Exam Tip

- Practice working with all types of vector notation so that you are prepared forwhatever comes up in the exam
- Your working and answerin the exam can be in any form unless told otherwise
- It is generally best to write your final answer in the same form as given in the question, however you will not lose marks for not do ing this unless it is specified in the question
- Vectors appearin bold (non-italic) font in textbooks and on exampapers, etc (i.e. $\boldsymbol{F}, \boldsymbol{a}$) but in handwriting should be underlined (i.e. $\underline{F}, \underline{\alpha}$)

Exam Papers Practice
© 2024 Exam Papers Practice

Exam Papers Practice

Worked example

a)

$$
\text { Write the vector }\left(\begin{array}{c}
-4 \\
0 \\
5
\end{array}\right) \text { using base vector notation. }
$$

$$
\left(\begin{array}{r}
-4 \\
0 \\
5
\end{array}\right)=-4 i+0_{j}+5 \underline{k}
$$

$$
\underline{k}-2 \underline{j}=0 \underline{i}-2 \underline{j}+\underline{k}
$$

Be careful with negative components and missing terms when working with base vectors

\longleftarrow The zero term is needed when using column vector notation

ParalleIVectors

How do you know if two vectors are parallel?

- Two vectors are parallel if one is a scalar multiple of the other
- This means that all components of the vector have been multiplied by a common constant (scalar)
- Multiplying every component in a vectorby a scalar will change the magnitude of the vector but not the direction
- For example: the vectors $\mathbf{a}=\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right)$ and $\mathbf{b}=2 \mathbf{a}=2\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right)=\left(\begin{array}{l}2 \\ 0 \\ 6\end{array}\right)$ will have the same
direction but the vectorb will have twice the magnitude of a
- Theyare parallel
- If avectorcan be factorised by a scalar then it is parallel to anyscalar multiple of the factorised vector
- For example:The vector $9 \mathbf{i}+6 \mathbf{j}-3 \mathbf{k}$ can be factorised bythe scalar 3 to $3(3 \mathbf{i}+2 \mathbf{j}-\mathbf{k})$ so the vector $9 \mathbf{i}+6 \mathbf{j}-3 \mathbf{k}$ is parallel to any scalar multiple of $3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$
- If a vector is multiplied by a negative scalar its direction will be reversed
- It will still be parallel to the original vector
- Two vectors are parallel if theyhave the same or reverse direction and equal if they have the same size and direction
© 2024 Exam Papers Practice

Oxam Tip

- It is easiest to spot that two vectors are parallel when they are in column vectornotation
- in your exam by writing vectors in column vectorform and looking for a scalar multiple you will be able to quickly determine whether they are parallel or not

Worked example

Show that the vectors $\mathbf{a}=\left(\begin{array}{c}2 \\ 0 \\ -4\end{array}\right)$ and $\mathbf{b}=6 \mathbf{k}-3 \mathbf{i}$ are parallel and find the scalar multiple that maps \mathbf{a} onto \mathbf{b}.

Convert both vectors into the same form and then look for a value of k such
that $\underline{a}=k \underline{b}$, where k is a scalar.
$\underline{a}=\left(\begin{array}{c}2 \\ 0 \\ -4\end{array}\right)$
$\underline{b}=6 \underline{k}-3 \underline{i}=-3 \underline{i}+0 \dot{j}+6 \underline{k}$
$=\left(\begin{array}{c}-3 \\ 0 \\ 6\end{array}\right)=-\frac{3}{2}\left(\begin{array}{c}2 \\ 0 \\ -4\end{array}\right)$
Copyright

$$
\begin{aligned}
&=-\frac{3}{2} \underline{a} \\
& \underline{b}=-\frac{3}{2} \underline{a}, \quad k=-\frac{3}{2}
\end{aligned}
$$

3.9.2 Position \& Displacement Vectors

Adding \& Subtracting Vectors

How are vectors added and subtracted numerically?

- To add or subtract vectors numerically simplyadd or subtract each of the corresponding components
- Incolumnvector notationjust add the to p , middle and bottom parts together
- For example: $\left(\begin{array}{c}2 \\ 1 \\ -5\end{array}\right)-\left(\begin{array}{l}1 \\ 4 \\ 3\end{array}\right)=\left(\begin{array}{c}1 \\ -3 \\ -8\end{array}\right)$
- In base vector notation add each of the \mathbf{i}, \mathbf{j}, and \mathbf{k} components together separately
- For example: $(2 \mathbf{i}+\mathbf{j}-5 \mathbf{k})-(\mathbf{i}+4 \mathbf{j}+3 \mathbf{k})=(\mathbf{i}-3 \mathbf{j}-8 \mathbf{k})$

Howare vectors added and subtracted geometrically?

- Vectors can be added geometrically byjoining the end of one vector to the start of the next one
- The result ant vector will be the shortest route from the start of the first vectorto the end of the second
- A resultant vector is a vector that results from adding or subtracting two ormore vectors
- If the two vectors have the same starting position, the second vectorcan be translated to the end of the first vector to find the resultant vector
- This results in a parallelo gram with the resultant vector as the diago nal
- To subtract vectors, consider this as adding on the negative vector
- For example: $\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})$
- The end of the resultant vector $\mathbf{a}-\mathbf{b}$ will not be anywhere near the end of the vectorb
- Instead, it will be at the point where the end of the vector -b would be

O Exam Tip

- Working in column vectors tends to be easiest when adding and subtracting
- in your exam, it can help to convert any vectors into column vectors before carrying out calculations with them
- If there is no diagram, drawing one can be helpful to help you visualise the problem

Worked example

$$
\begin{aligned}
& \underline{a}=5 \underline{i}-2 \dot{j}+O \underline{k}=\left(\begin{array}{r}
5 \\
-2 \\
0
\end{array}\right) \quad \underline{b}=\left(\begin{array}{r}
-3 \\
1 \\
2
\end{array}\right) \\
& \text { Writing as a column vector } \\
& \text { makes adding and subtracting } \\
& \text { easier. }
\end{aligned}
$$

$$
\begin{aligned}
& \underline{a}+\underline{b}=\left(\begin{array}{r}
5 \\
-2 \\
0
\end{array}\right)+\left(\begin{array}{r}
-3 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{r}
2 \\
-1 \\
2
\end{array}\right) \\
& \text { Resultant vector }=2 \underline{i}-j+2 \underline{k}
\end{aligned}
$$

Position Vectors

What is a position vector?

- A position vectordescribes the position of a point in relation to the origin
- It describes the direction and the distance from the point $O: O \mathbf{i}+0 \mathbf{j}+\mathbf{O k}$ or

© 2024 Exam Papers Practice

$$
\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

- It is different to a displacement vector which describes the direction and distance between any two points
- The position vector of point A is written with the notation $\mathbf{a}=\overrightarrow{\mathrm{OA}}$
- The origin is always denoted O
- The individual components of a position vector are the coordinates of its end point
- For example the point with coordinates (3,-2,-1) has position vector $3 \mathbf{i}-2 \mathbf{j}$ - \mathbf{k}

Worked example

Determine the position vector of the point with coordinates ($4,-1,8$).

$$
4 i-j+8 k
$$

Displacement Vectors

What is a displacement vector?

- Adisplacement vector describes the shortest route between anytwo points
- It describes the direction and the distance between any two points
- It is different to a position vector which describes the direction and distance from the point O: Oi $+\mathbf{O j} \circ\binom{0}{0}$
- The displacement vector of point B from the point A is written with the notation $\overrightarrow{A B}$
- A displacement vector between two points can be written in terms of the displacement vectors of a third point
- $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CB}}$
- A displacement vector can be written in terms of its positionvectors
- For example the displacement vector $\overrightarrow{\mathrm{AB}}$ can be written interms of $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OB}}$
- $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OB}}=-\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}$
- Forposition vector $\mathbf{a}=\overrightarrow{\mathrm{OA}}$ and $\mathbf{b}=\overrightarrow{\mathrm{OB}}$ the displacement vector $\overrightarrow{\mathrm{AB}}$ can be written $\mathbf{b}-\mathbf{a}$

O Exam Tip

- In an exam, sketching a quick diagram canhelp to make working out a displacement vector easier

Exam Papers Practice

Worked example

The point A has coordinates $(3,0,-1)$ and the point B has coordinates $(-2,-5,7)$. Find the displacement vector $\overrightarrow{\mathrm{AB}}$.

$$
\overrightarrow{O A}=\left(\begin{array}{r}
3 \\
0 \\
-1
\end{array}\right) \quad \overrightarrow{O B}=\left(\begin{array}{c}
-2 \\
-5 \\
7
\end{array}\right)
$$

$$
\begin{aligned}
& \overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B} \\
& =-\overrightarrow{O A}+\overrightarrow{O B}=\overrightarrow{O B}-\overrightarrow{O A}
\end{aligned}
$$

© 2024 Exam Papers Practice

$$
\overrightarrow{A B}=\left(\begin{array}{c}
-5 \\
-5 \\
8
\end{array}\right)
$$

3.9.3 Magnitude of a Vector

Magnitude of a Vector

How do you find the magnitude of a vector?

- The magnitude of a vectortells us its size orlength
- For a displacement vectorit tells us the distance between the two points
- For a position vectorit tells us the distance of the point from the origin
- The magnitude of the vector $\overrightarrow{\mathrm{AB}}$ is denoted $|\overrightarrow{\mathrm{AB}}|$
- The magnitude of the vector a is denoted |a|
- The magnitude of avectorcan be found using Pythagoras'Theroem
- The magnitude of a vector $\boldsymbol{V}=V_{1} \mathbf{i}+V_{2} \mathbf{j}+V_{3} \mathbf{k}$ is found using
- $|\boldsymbol{v}|=\sqrt{V_{1}^{2}+V_{2}^{2}+V_{3}^{2}}$
- where $v=\left(\begin{array}{c}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$
- This is given in the formula booklet

$$
\begin{gathered}
\text { MAGNITUDE } \\
\left.|\mathbf{a}|=|x \mathbf{i}+y \mathbf{j}+z \mathbf{k}|=\left|\begin{array}{l}
x \\
y \\
z
\end{array}\right| \right\rvert\,=\sqrt{x^{2}+y^{2}+z^{2}}
\end{gathered}
$$

$$
|\mathbf{a}|=\underset{\uparrow}{|\overrightarrow{A B}|}=\left|\left(\begin{array}{c}
3 \\
7 \\
-2
\end{array}\right)\right|=|3 i+7 j-2 k|
$$

A VECTOR'S MAGNITUDE IS SOMETIMES REFERRED TO AS ITS MODULUS

How dol find the distance between two points?

- Vectors can be used to find the distance (ordisplacement) betweentwo points
- It is the magnitude of the vectorbetween them
- Given the position vectors of two points:
- Find the displacement vectorbetween them
- Find the magnitude of the displacement vector between them

O Exam Tip

- Finding the magnitude of a vectoris the same as finding the distance between two coord inates, it is a useful formula to commit to memory in order to save time in the exam, however it is in your formula booklet if you need it

Worked example

Find the magnitude of the vector $A B=4 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$.

$|\overrightarrow{A B}|=\sqrt{4^{2}+1^{2}+2^{2}}=\sqrt{21}$

$$
|\overrightarrow{A B}|=\sqrt{21}
$$

Copyright
© 2024 Exam Papers Practice

Unit Vectors

What is a unit vector?

- A unit vector has a magnitude of 1
- It can be found by dividing a vector by its magnitude
- This will result in a vector with a size of lunit in the direction of the original vector
- A unit vector in the direction of \mathbf{a} is denoted $\frac{\mathbf{a}}{|\mathbf{a}|}$
- For example a unit vector in the direction $3 \mathbf{i}-4 \mathbf{j}$ is $\frac{(3 \mathbf{i}-4 \mathbf{j})}{\sqrt{3^{2}+4^{2}}}=\frac{3}{5} \mathbf{i}-\frac{4}{5} \mathbf{j}$

(-) Exam Tip

- Find ing the unit vector will not be a question on its own but will be a useful skill for further vectors problems so it is important to be confident with it

Worked example

Find the unit vector in the direction $2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$.
Let $\underline{a}=2 \underline{i}-2 \dot{j}+\underline{k}$
Find the magnitude of a

$|\underline{a}|=\sqrt{2^{2}+2^{2}+1^{2}}=\sqrt{9}=3$
Divide \underline{a} by its magnitude:
Unit vector $=\frac{\underline{a}}{|\underline{a}|}=\frac{2 \underline{i}-2 \dot{j}+\underline{k}}{3}$
$\frac{2}{3} i-\frac{2}{3} j+\frac{1}{3} \underline{k}$

3.9.4 The Scalar Product

The Scalar ('Dot') Product

What is the scalar product?

- The scalar product (also known as the dot product) is one form in which two vectors can be combined together
- The scalar product between two vectors \mathbf{a} and \mathbf{b} is denoted $\mathbf{a} \cdot \mathbf{b}$
- The result of taking the scalar product of two vectors is a real number
- i.e.a scalar
- The scalar product of two vectors gives information about the angle between the two vectors
- If the scalar product is positive then the angle between the two vectors is acute (less than 90°)
- If the scalar product is negative then the angle between the two vectors is obtuse (between 90° and 180°)
- If the scalar product is zero then the angle between the two vectors is $9 \mathbf{0}^{\circ}$ (the two vectors are perpendicular)

Howis the scalarproduct calculated?

- There are two methods forcalculating the scalar product
- The most common method used to find the scalar product between the two vectors \boldsymbol{v} and \boldsymbol{w} is to find the sum of the product of each component in the two vectors
- $\boldsymbol{V} \cdot \boldsymbol{w}=V_{1} W_{1}+V_{2} W_{2}+V_{3} W_{3}$
- Where $\boldsymbol{v}=\left(\begin{array}{c}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$ and $\boldsymbol{w}=\left(\begin{array}{c}W_{1} \\ W_{2} \\ W_{3}\end{array}\right)$
- This is given in the formula booklet
- The scalar product is also equal to the product of the magnitudes of the two vectors and the cosine of the angle between them
- $\boldsymbol{V} \cdot \boldsymbol{W}=|\boldsymbol{V}||W| \cos \theta$
- Where θ is the angle between \boldsymbol{v} and \boldsymbol{w}
- The two vectors vand ware joined at the start and pointing away fromeach other
- The scalar product can be used in the second formula to find the angle between the two vectors

What properties of the scalar product do Ineed to know?

- The orderof the vectors doesn't change the result of the scalar product (it is commutative)
- $\boldsymbol{V} \cdot \boldsymbol{W}=\boldsymbol{W} \cdot \boldsymbol{V}$
- The distributive law over addition can be used to 'expand brackets'
- u$\cdot(\boldsymbol{V}+\boldsymbol{W})=\boldsymbol{u} \cdot \boldsymbol{V}+\boldsymbol{u} \cdot \boldsymbol{W}$
- The scalar product is associative with respect to multiplication by a scalar
- $(k \boldsymbol{V}) \cdot(\boldsymbol{W})=k(\boldsymbol{V} \cdot \boldsymbol{W})$
- The scalar product between a vector and itself is equal to the square of its magnitude
- $\boldsymbol{V} \cdot \boldsymbol{V}=|\boldsymbol{V}|^{2}$
- If two vectors, \boldsymbol{v} and \boldsymbol{w}, are parallel then the magnitude of the scalar product is equal to the product of the magnitudes of the vectors
- $|\boldsymbol{V} \cdot \boldsymbol{W}|=|\boldsymbol{W}||\boldsymbol{V}|$
- This is because $\cos 0^{\circ}=1$ and $\cos 180^{\circ}=-1$
- If two vectors are perpendicular the scalar product is zero
- This is because $\cos 90^{\circ}=0$

(9) ExamTip

- Whilst the formulae for the scalar product are given in the formula booklet, the properties of the scalar product are not, however they are important and it is likely that yo u will need to recall them in your exam so be sure to commit them to memory

© 2024 Exam Papers Practice

Exam Papers Practice

Worked example

Calculate the scalar product between the two vectors $\boldsymbol{V}=\left(\begin{array}{c}2 \\ 0 \\ -5\end{array}\right)$ and $\boldsymbol{W}=3 \mathbf{j}-2 \mathbf{k}-\mathbf{i}$
using:
i) the formula $\boldsymbol{V} \cdot \boldsymbol{W}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}$,

$$
\begin{aligned}
& \underline{v}=\left(\begin{array}{c}
2 \\
0 \\
-5
\end{array}\right)=2 \underline{i}+0 \dot{j}-5 \underline{k} \\
& \underline{w}=3 \dot{j}-2 \underline{k}-\underline{i}=-1 \underline{i}+3 \underline{j}-2 \underline{k}
\end{aligned}
$$

Be aware of the order of the terms.

Scalar product	$\boldsymbol{v} \cdot \boldsymbol{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}$, where $\boldsymbol{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right), \boldsymbol{w}=\left(\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right)$

$$
\begin{aligned}
& \underline{V} \cdot \underline{W}=(2 \times-1)+(0 \times 3)+(-5 \times-2)=-2+10 \\
& \underline{V} \cdot \underline{W}=8
\end{aligned}
$$

ii) the formula $\boldsymbol{V} \cdot \boldsymbol{W}=|v||w| \cos \theta$, given that the angle between the two vectors is 66.6°.

$$
\underline{v}=\left(\begin{array}{c}
2 \\
0 \\
-5
\end{array}\right)=2 \underline{i}+0 \dot{j}-5 \underline{k} \quad \underline{w}=-1 \underline{i}+3 \underline{j}-2 \underline{k}
$$

Scalar product	$\boldsymbol{v} \cdot \boldsymbol{w}=\|\boldsymbol{v} \\| \boldsymbol{w}\| \cos \theta$

Find the magnitude of both vectors:
$|\underline{v}|=\sqrt{2^{2}+(-5)^{2}}=\sqrt{29} \quad|\underline{w}|=\sqrt{1^{2}+3^{2}+(-2)^{2}}=\sqrt{14}$
$V \cdot W=\sqrt{29} \times \sqrt{14} \cos 66.6^{\circ}$

$$
\underline{v} \cdot \underline{w}=8
$$

Exam Papers Practice

Angle Between Two Vectors

Howdo Ifind the angle between two vectors?

- If two vectors with different directions are placed at the same starting position, they will form an angle between them
- The two formulae forthe scalar product can be used to getherto find this angle
- $\cos \theta=\frac{V_{1} W_{1}+V_{2} W_{2}+V_{3} W_{3}}{|\boldsymbol{v}||\boldsymbol{w}|}$
- This is given in the formula booklet
- To find the angle between two vectors:
- Calculate the scalar product between them
- Calculate the magnitude of each vector
- Use the formula to find $\cos \theta$
- Use inverse trig to find θ

(9) Exam Tip

- The formula for this is given in the formula booklet so you do not need to remember it but make sure that you can find it quickly and easily in your exam

ExamPapers
Copyright
© 2024 Exam Papers Practice

Exam Papers Practice

Worked example

Calculate the angle formed by the two vectors $\boldsymbol{V}=\left(\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right)$ and $\boldsymbol{W}=3 \mathbf{i}+4 \mathbf{j}-\mathbf{k}$.

$$
\underline{v}=\left(\begin{array}{c}
-1 \\
3 \\
2
\end{array}\right) \quad, \quad \underline{w}=3 \underline{i}+4 j-\underline{k}=\left(\begin{array}{c}
3 \\
4 \\
-1
\end{array}\right)
$$

Start by finding the scalar product:

$$
\underline{v} \cdot \underline{w}=\left(\begin{array}{c}
-1 \\
3 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
3 \\
4 \\
-1
\end{array}\right)
$$

$$
=(-1 \times 3)+(3 \times 4)+(2 \times-1)=7
$$

Find the magnitude of both vectors:
$|\underline{v}|=\sqrt{(-1)^{2}+3^{2}+2^{2}}=\sqrt{14}$
$|\underline{W}|=\sqrt{3^{2}+4^{2}+(-1)^{2}}=\sqrt{26}$

$$
\theta=\cos ^{-1}(0.3668 \ldots)
$$

$$
\theta=68.5^{\circ} \quad(3 \mathrm{sf})
$$

Perpendicular Vectors

How do Iknowif two vectors are perpendicular?

- If the scalar product of two (non-zero) vectors is zero then they are perpendicular
- If $\boldsymbol{V} \cdot \boldsymbol{W}=0$ then \boldsymbol{v} and \boldsymbol{w} must be perpendicular to each other
- Two vectors are perpendicular if their scalar product is zero
- The value of $\cos \theta=0$ therefore $|\boldsymbol{v} \| \boldsymbol{w}| \cos \theta=0$

Worked example

Find the value of t such that the two vectors $\boldsymbol{V}=\left(\begin{array}{c}2 \\ t \\ 5\end{array}\right)$ and $\boldsymbol{W}=(t-1) \mathbf{i}-\mathbf{j}+\mathbf{k}$ are
perpendicular to each other.

$$
\begin{aligned}
& \text { The two vectors } \underline{v} \text { and } \underline{w} \text { are } \\
& \text { if } \underline{v} \cdot \underline{w}=0 \text {. } \\
& \begin{aligned}
& \underline{v}=\left(\begin{array}{l}
2 \\
t \\
5
\end{array}\right), \quad \underline{w}=\left(\begin{array}{c}
t-1 \\
-1 \\
1
\end{array}\right) \\
& \underline{v} \cdot \underline{w}=2(t-1)+t(-1)+5(1) \\
&=2 t-2-t+5
\end{aligned}
\end{aligned}
$$

Copyright
© 2024 Exam Paper Therefore \underline{v} and \underline{w} are perpendicular if
$t+3=0$
$t=-3$

3.9.5 Geometric Proof with Vectors

Geometric Proof with Vectors

Howcan vectors be used to prove geometrical properties?

- If two vectors can be shown to be parallel then this can be used to prove parallellines
- If two vectors are scalar multiples of each other then they are parallel
- To prove that two vectors are parallel simplys how that one is a scalar multiple of the other
- If two vectors can be shownto be perpendicular then this can be used to prove perpendicular lines
- If the scalar product is zero then the two vectors are perpendicular
- If two vectors can be shown to have equal magnitude then this can be used to prove two lines are the same length
- To prove a 2D shape is a parallelogram vectors can be used to
- Show that there are two pairs of parallel sides
- Show that the opposite sides are of equallength
- The vectors opposite each otherwith be equal
- If the angle between two of the vectors is shown to be 90° then the parallelo gram is a rectangle
- To prove a 2D shape is a rhombus vectors can be used to
- Show that there are two pairs of parallel sides
- The vectors opposite each otherwith be equal
- Show that all four sides are of equal length
- If the angle between two of the vectors is shown to be 90° then the rhombus is a square

Howare vectors used to follow paths through a diagram?

- In a geometric diagram the vector $\overrightarrow{\mathrm{AB}}$ forms a path from the point A to the point B
- This is specific to the path $A B$
- If the vector $\overrightarrow{\mathrm{AB}}$ is labelled a then any other vector with the same magnitude and direction as a could also be labelled a
- The vector $\overrightarrow{\mathrm{BA}}$ would be labelled -a
- It is parallel to a but pointing in the opposite direction
- If the point M is exactly halfway between A and B it is called the midpoint of A and the vector $\overrightarrow{A M}$ could be labelled $\frac{1}{2} \mathbf{a}$
- If there is a point X on the line $A B$ such that $\overrightarrow{\mathrm{AX}}=2 \overrightarrow{\mathrm{XB}}$ then X is two -thirds of the way along the line $\overrightarrow{\mathrm{AB}}$
- Other ratios can be found in similar ways
- A diagram often helps to visualise this
- If a point X divides a line segment $A B$ into the ratio $p: q$ then
- $\overrightarrow{\mathrm{AX}}=\frac{\mathrm{p}}{\mathrm{p}+\mathrm{q}} \overrightarrow{\mathrm{AB}}$
- $\overrightarrow{\mathrm{XB}}=\frac{\mathrm{q}}{\mathrm{p}+\mathrm{q}} \overrightarrow{\mathrm{AB}}$

How can vectors be used to find the midpoint of two vectors?

- If the point A has positionvectora and the point B has positionvectorb then the positionvector
of the midp oint of $\overrightarrow{\mathrm{AB}}$ is $\frac{1}{2}(\mathbf{a}+\mathbf{b})$
- The displacement vector $\overrightarrow{\mathrm{AB}}=\mathbf{b}-\mathbf{a}$
- Let M be the midpoint of $\overrightarrow{\mathrm{AB}}$ then $\overrightarrow{\mathrm{AM}}=\frac{1}{2}(\overrightarrow{\mathrm{AB}})=\frac{1}{2}(\mathbf{b}-\mathbf{a})$
- The position vector $\overrightarrow{\mathrm{OM}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AM}}=\mathbf{a}+\frac{1}{2}(\mathbf{b}-\mathbf{a})=\frac{1}{2} \mathbf{b}+\frac{1}{2} \mathbf{a}=\frac{1}{2}(\mathbf{a}+\mathbf{b})$

Howcan vectors be used to prove that three points are collinear?

- Three points are collinear if they all lie on the same line
- The vectors between the three points will be scalar multiples of each other
- The points A, B and C are collinear if $\overrightarrow{A B}=k \overrightarrow{B C}$
- If the points A, B and M are collinear and $\overrightarrow{A M}=\overrightarrow{M B}$ then M is the midpoint of $\overrightarrow{A B}$

- ExamTip

- Think of vectors like a jo urney from one place to another
- You may have to take a detoure.g. A to B might be A to O then O to B
- Diagrams can help, if there isn't one, draw one
- If a diagram has been given begin by labelling all known quantities and vectors

Worked example

Use vectors to prove that the points A, B, Cad D with position vectors $\mathbf{a}=(3 \mathbf{i}-5 \mathbf{j}-4 \mathbf{k}), \mathbf{b}=(8 \mathbf{i}-7 \mathbf{j}-$ $5 \mathbf{k}), \mathbf{c}=(3 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k})$ and $\mathbf{d}=(5 \mathbf{k}-2 \mathbf{i})$ are the vertices of a parallel gram.

Find the displacement vectors $\overrightarrow{A B}, \overrightarrow{B C}, \overrightarrow{C D}$ and $\overrightarrow{D A}$

$$
\begin{aligned}
& \overrightarrow{A B}=\underline{b}-\underline{a}=\left(\begin{array}{c}
8 \\
-7 \\
-5
\end{array}\right)-\left(\begin{array}{c}
3 \\
-5 \\
-4
\end{array}\right)=\left(\begin{array}{c}
5 \\
-2 \\
-1
\end{array}\right) \\
& \overrightarrow{B C}=\underline{c}-\underline{b}=\left(\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right)-\left(\begin{array}{c}
8 \\
-7 \\
-5
\end{array}\right)=\left(\begin{array}{c}
-5 \\
5 \\
9
\end{array}\right) \\
& \overrightarrow{C D}=\underline{d}-\underline{c}=\left(\begin{array}{r}
-2 \\
0 \\
5
\end{array}\right)-\left(\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right)=\left(\begin{array}{c}
-5 \\
2 \\
1
\end{array}\right) \\
& \overrightarrow{D A}=\underline{a}-\underline{d}=\left(\begin{array}{c}
3 \\
-5 \\
-4
\end{array}\right)-\left(\begin{array}{r}
-2 \\
0 \\
5
\end{array}\right)=\left(\begin{array}{c}
5 \\
-5 \\
-9
\end{array}\right) \\
& \overrightarrow{A B}=-\overrightarrow{C D} \text { and } \overrightarrow{B C}=-\overrightarrow{D A} \therefore A B C D \\
& \text { must be a parallelogram }
\end{aligned}
$$

