铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

3.9 Modelling with Vectors

3.9.1 Kinematics with Vectors

Kinematics using Vectors

Howare vectors related to kinematics?

- Kinematics is the use of mathematics to model motion in objects
- If anobject is moving in one dimension then its velocity, displacement and time are related using the formula $s=v t$
- where s is displacement, vis velocity and t is the time taken
- If an object is moving in more than one dimension then vectors are needed to represent its velocity and displacement
- Whilst time is a scalar quantity, displacement and velocity are both vector quantities
- Vectors are often used inquestions in the context of forces, accelerationorvelocity
- The position of an object at a particular time can be modelled using a vector equation

Howdo Ifind the direction of a vector?

- Vectors have opposite directions if they are the same size but opposite signs
- The direction of a vectoris what makes it more thanjust a scalar
- E.g. two objects with velocities of $7 \mathrm{~m} / \mathrm{s}$ and $-7 \mathrm{~m} / \mathrm{s}$ are travelling at the same speed but in oppositedirections
- Two vectors are parallel if and only if one is a scalar multiple of the o ther
- Forreal-life contexts such as mechanics, direction can be calculated froma givenvectorusing trigonometry
- Given the i and j components a right-triangle can be created and the angle found using SOHCAHTOA
- It is usually given as a bearing or as an angle calculated anticlockwise from the positive x-axis

How do Ifind the distance between two moving objects?

- If two objects are moving with constant velocity in non-parallel directions the distance between them will change
- The distance between them can be found by finding the magnitude of their position vectors at any point in time
- The shortest distance between the two objects at a particular time can be found by finding the value of the time at which the magnitude is at its minimum value
- Let the time when the objects are at the shortest distance be t
- Find the distance, d, in terms of t by substituting into the equation for the magnitude of their position vectors
- d^{2} will be an expression in terms of t which can be differentiated and set to 0
- Solving this will give the time at which the distance is at a minimum
- Substitute this back into the expression for dto find the shortest distance

© Exam Tip

- Kinematics questions canhave a lot of informationin, read them carefully and pick out the parts that are essential to the question
- Look out for where variables used are the same and/or different within vector equations, you will need to use different techniques to find these

Worked example

Two objects, A and B, are moving so that their position relative to a fixed point, O at time t, in minutes can be defined by the position vectors $\boldsymbol{r}_{\boldsymbol{A}}=\binom{3}{-1}+t\binom{-2}{4}$ and

$$
\boldsymbol{r}_{\boldsymbol{B}}=\binom{2}{5}+t\binom{3}{-1}
$$

The unit vectorsiand jere a displacement of 1 metre due East and North of O respectively.
a) Find the coordinates of the initial position of the two objects.

The initial position is when $t=0$

$$
\begin{aligned}
& r_{A}=\binom{3}{-1}+O\binom{-2}{4}=\binom{3}{-1} \\
& r_{B}=\binom{2}{5}+O\binom{3}{-1}=\binom{2}{5}
\end{aligned}
$$

$$
A(3,-1) \text { and } B(2,5)
$$

b) Find the shortest distance between the two objects and the time at which this will occur.

Let the shortest distance occur at time, t, then:

$$
A:(3-2 t,-1+4 t) \quad B:(2+3 t, 5-t)
$$

Find the distance between A and B in terms of t

Copyright

$$
d=\sqrt{[(2+3 t)-(3-2 t)]^{2}+[(5-t)-(-1+4 t)]^{2}}
$$

© 2024 Exam Papers Prac

$$
\begin{aligned}
& \stackrel{\text { S Practice }}{=} \\
&(-1+5 t)^{2}+(6-5 t)^{2} \\
&=\sqrt{\left(1-10 t+25 t^{2}\right)+\left(36-60 t+25 t^{2}\right)} \\
& d^{2}=37-70 t+50 t^{2}
\end{aligned}
$$

Find the minimum point of d^{2} :

$$
\begin{aligned}
\frac{d d^{2}}{d t}=-70+100 t \quad \therefore-70+100 t & =0 \\
t & =\frac{70}{100}=0.7
\end{aligned}
$$

When $t=0.7, d=\sqrt{37-70(0.7)+50(0.7)^{2}}=\sqrt{12.5}$

$$
d=3.54 \mathrm{~m}(3 \text { s.f. })
$$

3.9.2 Constant \& Variable Velocity

Vectors \& Constant Velocity

How are vectors used to modellinear motion?

- If an object is moving with constant velocity it will travel in a straight line
- For an object moving in a straight line in two orthree dimensions its velocity, displacement and time can be related using the vector equation of a line
- $r=a+\lambda b$
- Letting
- rbe the position of the object at the time, t
- abe the position vector, r_{0} at the start $(t=0)$
- λ represent the time, t
- bbe the velocity vector, \boldsymbol{v}
- Then the position of the object at the time, t can be given by
- $r=r_{0}+t v$
- The velocity vector is the direction vector in the equation of the line
- The speed of the object will be the magnitude of the velocity $|\boldsymbol{v}|$

Worked example

A car, moving at constant speed, takes 2 minutes to drive in a straight line from point $A(-4,3)$ to point B $(6,-5)$.

At time t, in minutes, the position vector (\boldsymbol{p}) of the car relative to the origin can be given in the form $\boldsymbol{p}=\boldsymbol{a}+t \boldsymbol{b}$.

Find the vectors \boldsymbol{a} and \boldsymbol{b}.

$$
\left.\begin{array}{l}
\text { Vector } \underline{a} \text { represents the initial position and vector } \\
\underline{b} \text { represents the direction vector per minute. } \\
\text { Position vector } \overrightarrow{O A}=\binom{-4}{3} \\
\text { At } t=0 \text { minutes, } \vec{f}=\underline{a} \text { so } \underline{a}=\overrightarrow{O A}=\binom{-4}{3} \\
\text { Position vector } \overrightarrow{O B}=\binom{6}{-5} \\
\text { At } t=2 \text { minutes, the car is at the point } B \text { and so } \overrightarrow{O B}=\underline{a}+2 \underline{b} \\
\binom{6}{-5}=(-4 \\
-4
\end{array}\right)+2 \underline{b} \text {. } \quad \begin{aligned}
& \text { Direction vector } 2 \underline{b}=\binom{6}{-5}-\binom{-4}{3}=\binom{10}{-8} \\
& \underline{a}=\binom{-4}{3} \quad \underline{b}=\binom{5}{-4}
\end{aligned}
$$

Vectors \& Variable Velocity

How are vectors used to model motion with variable velocity?

- The velocity of a particle is the rate of change of its displacement over time
- In one dimension velocity, \boldsymbol{v}, is found be taking the derivative of the dis placement, \boldsymbol{s}, with respect to time, \boldsymbol{t}
- $v=\frac{\mathrm{d} s}{\mathrm{~d} t}$
- In more than one dimensionvectors are used to represent motion
- For displacement given as a function of time in the form
- $\mathbf{r}(t)=\binom{f_{1}(t)}{f_{2}(t)}$
- The velocityvector can be found by differentiating each component of the vectorindividually
- $\mathbf{v}=\binom{v_{1}(t)}{v_{2}(t)}$
$. \mathbf{v}=\frac{d \mathbf{r}}{d t}=\binom{f_{1}^{\prime}(t)}{f_{2}^{\prime}(t)}$

- The velocity should be left as a vector
- The speed is the magnitude of the velocity
- If the velocity vector is known, displacement can be found by integrating each component of the vectorindividually
- The constant of integration for each component will need to be found
- The acceleratio n of a particle is the rate of change of its velo city overtime
- In one dimension acceleration, \boldsymbol{a}, is found be taking the derivative of the velocity, \boldsymbol{v}, with respect to time, \boldsymbol{t}
- $\mathbf{a}=\frac{d \mathbf{v}}{d t}=\frac{d^{2} \mathbf{r}}{d t^{2}}$
- In two dimensions acceleration can be found by differentiating each component of the velocity vectorindividually
- $\mathbf{a}=\binom{a_{1}(t)}{a_{2}(t)}$
- $\mathbf{a}=\frac{d \mathbf{v}}{d t}=\binom{v_{1}{ }^{\prime}(t)}{v_{2}{ }^{\prime}(t)}$
- $\mathbf{a}=\frac{d^{2} \mathbf{r}}{d t^{2}}=\binom{f_{1}{ }^{\prime \prime}(t)}{f_{2}{ }^{\prime \prime}(t)}$
- If the accelerationvectoris known, the velocityvectorcan be found by integrating each component of the acceleration vector individually
- The constant of integration for each component will need to be found

(9) Exam Tip

- Look out for clues in the question as to whetheryou should treat the question as a constant or variable velocity problem
- 'moving at a constant speed ' will implyusing a linear model
- an object falling or rolling would imply variable velocity

Worked example

A ball is rolling down a hill with velocity $V=\binom{5}{3}+t\binom{0}{-0.8}$. At the time $t=0$ the coo rd nate of the ball are $(3,-2)$.
a) Find the acceleration vector of the ball's motion.

$$
\begin{aligned}
& \underline{v}=\binom{5}{3-0.8 t} \Rightarrow \underline{a}=\frac{d \underline{v}}{d t}=\binom{0}{-0.8} \\
& \underline{a}=-0.8 j
\end{aligned}
$$

b) Find the position vector of the ball at the time, t.

$$
\begin{aligned}
& \underline{r}=\int \underline{v} d t=\int\binom{5}{3-0.8 t} d t=\binom{5 t+c}{3 t-\frac{0.8 t^{2}}{2}+d} \\
& \text { at } t=0, r=\binom{3}{-2} \quad \begin{array}{l}
\text { A constant of integration } \\
\text { is needed for both components. }
\end{array} \\
& \binom{5(0)+c}{3(0)-\frac{0.8(0)^{2}}{2}+d}=\binom{3}{-2} \quad \therefore \quad c=3, d=-2 \\
& r=(5 t+3) i+\left(3 t-0.4 t^{2}-2\right) j
\end{aligned}
$$

