Mark schemes

1

(a) 1. Cut (DNA) at same (base) sequence / (recognition) sequence;

Accept: cut DNA at same place

- (So) get (fragments with gene) **R** / required gene.
 Accept: 'allele' for 'gene' / same gene
- (b) 1. Each has / they have a specific base sequence;
 2. That is complementary (to allele r or R). Accept description of 'complementary'
- 2

3

2

2

2

(c) 1. Fragments L from parent rr, because all longer fragments / 195 base pair fragments;

Ignore: references to fragments that move further / less, <u>require</u> identification of longer / shorter or 195 / 135 Accept: (homozygous) recessive

2. Fragments N from parent RR, because all shorter fragments / 135 base pairfragments;

1 and 2 Accept: A3 for 195 and A4 for 135

- 2. Accept: (homozygous) dominant
- 3. (M from) offspring heterozygous / Rr / have both 195 and 135 base pairfragments.
 Accept: have both bands / strips Reject: primer longer / shorter
- (d) 1. (Cells in mitosis) chromosomes visible;
 - 2. (So) can see which chromosome DNA probe attached to.
- (e) (i) 1. For comparison with resistant flies / other (two) experiments / groups;
 Ignore: compare results / data / no other factors
 - To see death rate (in non-resistant) / to see effect of insecticide in non-resistant / normal flies. Accept: 'pesticide' as 'insecticide' Accept to see that insecticide worked / to see effect of enzyme
 - (ii) (PM must be involved because)
 - 1. Few resistant flies die (without inhibitor);
 - 2. More inhibited flies die than resistant flies;
 - 3. (PM) inhibited flies die faster (than resistant flies);
 - (Other factors must be involved because)
 - 4. Some resistant flies die;

5. But (with inhibitor) still have greater resistance / die slower thannon-resistant flies.

Accept: (with inhibitor) die slower than non-resistant flies

4 max

[15] (a) Reverse transcriptase;

(b)	1.	Probe (base sequence) complementary (to DNA of allele A / where A is (and) binds by forming base pairs / hydrogen bonds; <i>Accept gene A</i>	
	2.	So (only) this DNA labelled / has green dye / gives out (green) light; Accept glows for green light	
(c)	(i)	 More probe binding / more cDNA / mRNA / more allele / gene A means more light; 	
		2. DNA (with A) doubles each (PCR) cycle;	
		 So light (approximately) doubles / curve steepens more and more (eachcycle) / curve goes up exponentially / increases even faster;)
	(ii)	(G because)	
		 (Heterozygous) only has half the amount of probe for A attaching / only half the amount of DNA / allele A (to bind to); Accept only one A to bind to 	
		 (So,) only produced (about) half the light / glow / intensity (of H) (per cycle of PCR); 	
		If reference to 'half' for point 1, allow 'less light' in 2.	

3

DNA and classification

- 2.2 Structure of DNA
- 2.3 Differences in DNA lead to genetic diversity
- 2.9 Comparison of DNA base sequences

Genetic engineering and making useful substances

- 2.5 Plasmids
- 5.8 The use of recombinant DNA to produce transformed organisms that benefit humans

Other uses of DNA

- 2.5 Cell cycle and treatment of cancer
- 5.8 Gene therapy;

Medical diagnosis and the treatment of human disease;

The use of DNA probes to screen patients for clinically important genes.

(a) (i) 1. Negative correlation;

4

Accept: description for 'negative correlation' Neutral: 'correlation' Reject: positive correlation

- 2. Wide range;
- 3. Overlap;
- 4. (Graph suggests that) other factors may be involved (in age of onset);
 2 / 3 Accept the use of figures from the graph

2 / 3 Can refer to age of onset or number of CAG repeats

Ignore references to methodology

3 max

- (ii) 1. Age of onset can be high / symptoms appear later in life; Accept: 'gene' for 'allele'
 - 2. (So) individuals have already had children / allele has been passed on;

OR

- 3. Individuals have passed on the allele / already had children;
- 4. Before symptoms occur;

2 max

(b) (i) 1. Person **K**;

- (As has) high(est) band / band that travelled a short(est) distance / (er) so has large(st) fragment / number of CAG repeats; *Must correctly link* distance moved and fragment size
- (ii) Run fragments of known length / CAG repeats (at the same time); Accept: references to a DNA ladder / DNA markers Do not accept DNA sequencing

2

		(iii)	Homozygous / (CAG) fragments are the same length / size / ma Accept: small fragment has run off gel / travelled further	ass;		1	
_			[9]	(a)	(i)	To cut the [DNA;
5			Reject breakdown, cutting out			1	
		(ii)	To separate the (pieces of) DNA;			1	
	(c)	Cor	mplimentary base sequence / complementary DNA; binds to both	(hapl	otype	es);	
		Labe	el would show up in both; Idea of complimentarity required			2	
	(പ)	(;)	V abroman in baritad / annual from male naranta / anh faur	a al time un		. 2	
	(a)	(1)	Y chromosome innented / comes from male parents / only four	na in r	nales	, 1	
		(ii)	Mitochondria in egg / female gamete / no mitochondria come fro malegamete;	om sp	erm /	1	
	(e)	(i)	Allows comparison;				
			Different (sized) areas covered;			2	
		(ii)	Wolves do not eat all of prey animal / do not eat (large) bones /	skin;			
			Inedible parts make up different proportions / wolf eats different	t prop	ortion	S; 2	
	(f)	Limited by food / prey; as prey increases so do wolf numbers / positive correlation					
		Larg	ge range so other factors involved;				
				[12]	(a)	a length of [DNA;
6 th	nat coo	des fo	r a single protein / polypeptide;			2	
	(b)	by h base	eating;to break the H-bonds (between complementary es);			-	
						2	
	(c)	(i) ofnu copi	to allow the DNA polymerase to attach / start addition acleotides / mark start and end of sequence to be and / prevents strands re-ioining:				
		· - I- •				1	

- (ii) because the sequences at the ends of the target sequenceare different / one is at the beginning and one at the end;
 (d) 8;
 accept 7
 1
 [7] (a) 1 DNA is cut;
- 7

2 Using restriction enzyme;

- 3 Use electrophoresis;
- 4 Separates according to length / mass;
- 5 Southern blotting / transfer to (nylon) membrane;
- 6 Make single-stranded;
- 7 Apply probe;
- 8 Radioactive / fluorescent;
- 9 Reference to tandem repeats / VNTRs / minisatellites;
- 10 Autoradiography / eq;8 and 10 should be consistent
- (c) (i) All bands in cub which don't come from mother;
 Must be in father's DNA fingerprint;
 Principle that all bands in cub must come from mother and father = 1
- (ii) Select pairs with dissimilar DNA fingerprints;
 (d) (i) Cells (from panda) in faeces / gut cells / blood cells;
 (ii) To increase amount of DNA / only small amount present;

max 6

2

2

- (iii) DNA / primer has specific base-sequence;
 Reference to specific / complementary base-pairing;
- Taking samples from animals causes stress / injury to animal;
 Difficult to find animals;

8

9

			[15] (a)	1	max 2 DNA is cut:
			[10] (u)		
	2. 3. 4. 5. 6. 7. 8.	using restriction enzyme; electrophoresis; separates according to length / mass / size; DNA made single-stranded; transfer to membrane / Southern blotting; apply probe; radioactive / single stranded / detected on film / fluorescent;			
	9. 10.	reference to tandem repeats / VNTRs / minisatellites; pattern unique to every individual;			6 max
(b)	cells	on toothbrush;			
	DNA	present in cell;			2
(c)	(i)	toothbrush gives small sample of DNA / need more DNAfor and PCR gives many copies;	alysis;		2
	(ii)	uses heat;to separate strands; OR PCR replicates pieces of DNA; because DNA has been cut; OR primer added in PCR; to initiate replication			
					2 max
(d)	(i)	PCR / amplification needed;			1
	(ii)	other DNA present; need to identify 'required' DNA from rest;			2
		[15] (a) Mother and father both	heterozyg	jotes /	Tt / carriers;
	Prob Prob	ability of thalassaemia 1/4 and female 1/2; ability of both 1/8;			
					3
(b)	(i)	Cut at same base sequence as same enzyme used; Fragments are same length / size / have same charge;			2

(ii) Single base occurs many times;Sequence of 20 unlikely to occur elsewhere;

Allow one mark for establishing the principle where neither marking point clearly made.

10

2

[7] (a) (i) Different genes / characteristics / features;

10		(ii) (iii)	Reference to mutations; Or Base sequence determines protein; Different species have different protein sequences; Primer has different DNA sequence; DNA specific / complementary base-pairing; Electrophoresis separates DNA; (So they can be) identified by position on gel; Smaller / shortest fragments travel furthest / quicker / or reverse argument;	max 2 2
	(b)	(<i>con</i> u Each	<i>ventional</i>) Many lengths / all DNA / (<i>new</i>) one length; rung is DNA of one / specific length;	3
	(c)	1 Hea 2 Bre 3 Add 4 Add 5 Coo 6 (to 7 <u>DN</u> 8 Rol	at DNA; aks hydrogen bonds / separates strands; d primers; d nucleotides; bl; allow) binding of nucleotides / primers; <u>A</u> polymerase; e of (DNA) polymerase;9 Repeat cycle many times;	max 6
			[15] (a)	Endonuclease / restriction enzyme;
11				1
	(b)	DNA Each along	made of base pairs; base pair is same length / occupies same distance backbone;	2
	(c)	(i)	Second blank box from left labelled 6;	1
		(ii)	Distance moved depends on length / number of base pairs /second longest fragment / second shortest distance identified;	1

(d)	5;
(u)	υ,

(d) 5;	
ICI (a) and a maintenants abtains	1
[6] (a) only small amounts obtained	d / PCR increases the amount / mass of D
	s
	0
	е
	n
	0
	u
	g
	ĥ
	D
	Ν
	А
	а
	v
	а
	i
	I
	а
	b
	I
	е
	f
	0
	r
	g
	e
	n
	е
	t
	i

c f

i n g e

r

p r

i n t i n

g ; 2

	(b)	(i)	to separate the two strands of the DNA /to break the hydrogen bonds;	
			(Reject unzip)	1
		(ii)	short lengths / fragments of DNA / nucleotides /single stranded DNA;	1
		(iii)	to mark beginning and / or ends of the part of DNA needed /for attachment of enzymes or nucleotides / initiator / keeps strands apart;	1
		(iv)	would not be denatured;must be heated to 95 °C / must withstand <u>high</u> temps;	2
	(c)	1 Di 2 C 3 n 4 C 5 d 10 ir 7 S 8 C 9 r 0 10 (i	NA extracted from sample; DNA cut / hydrolysed into segments using restriction endonucleases; nust leave minisatellites / required core sequences intact; DNA fragments separated using <u>electrophoresis;</u> detail of process e.g. mixture put into wells on gel <u>and</u> electric current passed hrough; mmerse gel in alkaline solution / two strands of DNA separated; Southern blotting / cover with nylon / absorbent paper (to absorb DNA); DNA fixed to nylon / membrane using uv light adioactive marker / probe added (which is picked up by required fragments) / complementary to minisatellites; areas with probe) identified using X-ray film / autoradiography;	max 6
	(d)	adu chilo	It 3;this is only one which, (with number 1), can provide (all) the DNA fragments v dren have / all bars match;	which
			(Reject 'genes')	2
				[15]
13	1 [DNA h	eated to 90 to 95°C;	
	2 s 3 c 4 p 5 <u>r</u> 6 k 7 t 8 C 9 c	strands cooled primers <u>nucleo</u> by com emper DNA p cycle r	s separate; I / to temperature below 70°C s bind; <u>stides</u> attach; nplementary base pairing; rature 70 - 75°C; polymerase joins nucleotides together; repeated;	6 max
			[6] (a) to separate the two strands / break hyd	rogen bonds;
14				1

	(b)	(i) sepi			
		,-		1	
		(ii)	joins DNA nucleotides (not complementary bases);	1	
	(c)	(i)	64;	1	
		(ii)	replication of DNA from crime scene / tissue sample /for DNA sequencing / gene cloning;		
				1	
	(d)	(trar (tem (<i>acc</i>	nscription uses) RNA polymerase;RNA nucleotides / uracil; one nplate) strand / PCR both strands; start / stop codons; cept enzyme separates strands)		
		(400		2 max	
			[7] (a) (i) to separate polynucleotide strands / form	single stra	nds;
15				1	
		(ii)	not denatured (at 95°C);	1	
		(iii)	for binding of primers / nucleotides (to DNA strands);	1	
	(b)	(i)	doubling (of DNA) each cycle; but very low numbers to		
			start with, so appears flat then exponential growth;	2	
		(ii)	suggestion; with explanation e.g.:		
			nucleotides being used up; so less / nothing to make complementary chains;		
			primers used up; so cannot start complementary chains;		
			enzymes losing activity / denatured; so no polymerisation of complementary strands;		
				2 max	[7]

[/]