(a) 1. Cut (DNA) at same (base) sequence / (recognition) sequence;

Accept: cut DNA at same place

2. (So) get (fragments with gene) $\mathbf{R} /$ required gene.

Accept: 'allele' for 'gene'/ same gene
(c) 1. Fragments L from parent rr, because all longer fragments / 195 base pair fragments;

Ignore: references to fragments that move further / less, require identification of longer / shorter or 195 / 135 Accept: (homozygous) recessive
2. Fragments N from parent RR, because all shorter fragments / 135 base pairfragments;

1 and 2 Accept: A3 for 195 and A4 for 135
2. Accept: (homozygous) dominant
3. (M from) offspring heterozygous / Rr / have both 195 and 135 base pairfragments.
Accept: have both bands / strips
Reject: primer longer / shorter
(d) 1. (Cells in mitosis) chromosomes visible;
2. (So) can see which chromosome DNA probe attached to.
(e) (i) 1. For comparison with resistant flies / other (two) experiments / groups;
Ignore: compare results / data / no other factors
2. To see death rate (in non-resistant) / to see effect of insecticide in non-resistant / normal flies. Accept: 'pesticide' as 'insecticide' Accept to see that insecticide worked / to see effect of enzyme
(ii) (PM must be involved because)

1. Few resistant flies die (without inhibitor);
2. More inhibited flies die than resistant flies;
3. (PM) inhibited flies die faster (than resistant flies);
(Other factors must be involved because)
4. Some resistant flies die;
5. But (with inhibitor) still have greater resistance / die slower thannon-resistant flies.

Accept: (with inhibitor) die slower than non-resistant flies
4 max
[15] (a) Reverse transcriptase;
(b) 1. Probe (base sequence) complementary (to DNA of allele A / where A is (and) binds by forming base pairs / hydrogen bonds; Accept gene A
2. So (only) this DNA labelled / has green dye / gives out (green) light; Accept glows for green light
(c) (i) 1. More probe binding / more cDNA / mRNA / more allele / gene A means more light;
2. DNA (with A) doubles each (PCR) cycle;
3. So light (approximately) doubles / curve steepens more and more (eachcycle) / curve goes up exponentially / increases even faster;
(ii) (G because)

1. (Heterozygous) only has half the amount of probe for \mathbf{A} attaching / only half the amount of DNA / allele A (to bind to); Accept only one A to bind to
2. (So,) only produced (about) half the light / glow / intensity (of H) (per cycle of PCR);
If reference to 'half' for point 1, allow 'less light' in 2.

Essay Using DNA in science and technology

DNA and classification

2.2 Structure of DNA
2.3 Differences in DNA lead to genetic diversity
2.9 Comparison of DNA base sequences

Genetic engineering and making useful substances

2.5 Plasmids
5.8 The use of recombinant DNA to produce transformed organisms that benefit humans

Other uses of DNA

2.5 Cell cycle and treatment of cancer
5.8 Gene therapy;

Medical diagnosis and the treatment of human disease;
The use of DNA probes to screen patients for clinically important genes.
(a) (i) 1. Negative correlation;

Accept: description for 'negative correlation'
Neutral: 'correlation'
Reject: positive correlation
2. Wide range;
3. Overlap;
4. (Graph suggests that) other factors may be involved (in age of onset);

2 / 3 Accept the use of figures from the graph
2 / 3 Can refer to age of onset or number of CAG repeats
Ignore references to methodology
3 max
(ii) 1. Age of onset can be high / symptoms appear later in life;

Accept: 'gene' for 'allele'
2. (So) individuals have already had children / allele has been passed on;

OR

3. Individuals have passed on the allele / already had children;
4. Before symptoms occur;
(b) (i) 1. Person K;
5. (As has) high(est) band / band that travelled a short(est) distance / (er) so has large(st) fragment / number of CAG repeats; Must correctly link distance moved and fragment size
(ii) Run fragments of known length / CAG repeats (at the same time);

Accept: references to a DNA ladder / DNA markers
Do not accept DNA sequencing
(iii) Homozygous / (CAG) fragments are the same length / size / mass;

5
Reject breakdown, cutting out
1
(ii) To separate the (pieces of) DNA;
(c) Complimentary base sequence / complementary DNA; binds to both (haplotypes);

Label would show up in both;
Idea of complimentarity required
2
(d) (i) Y chromosome inherited / comes from male parents / only found in males;
(ii) Mitochondria in egg / female gamete / no mitochondria come from sperm / malegamete;

1
(e) (i) Allows comparison;

Different (sized) areas covered;
(ii) Wolves do not eat all of prey animal / do not eat (large) bones / skin; Inedible parts make up different proportions / wolf eats different proportions;
(f) Limited by food / prey; as prey increases so do wolf numbers / positive correlation;

Large range so other factors involved;
[12] (a) a length of DNA;
6 that codes for a single protein / polypeptide;
(b) by heating;to break the H -bonds (between complementary bases);
(c) (i) to allow the DNA polymerase to attach / start addition ofnucleotides / mark start and end of sequence to be copied / prevents strands re-joining;
(ii) because the sequences at the ends of the target sequenceare different / one is at the beginning and one at the end;
(d) 8 ;
accept 7

1
[7] (a) 1 DNA is cut;

2 Using restriction enzyme;
3 Use electrophoresis;
4 Separates according to length / mass;
5 Southern blotting / transfer to (nylon) membrane;
6 Make single-stranded;
7 Apply probe;
8 Radioactive / fluorescent;
9 Reference to tandem repeats / VNTRs / minisatellites;
10 Autoradiography / eq;8 and 10 should be consistent
$\max 6$
(c) (i) All bands in cub which don't come from mother;

Must be in father's DNA fingerprint;
Principle that all bands in cub must come from mother and father $=$ 1
(ii) Select pairs with dissimilar DNA fingerprints;
(d) (i) Cells (from panda) in faeces / gut cells / blood cells;
(ii) To increase amount of DNA / only small amount present;
(iii) DNA / primer has specific base-sequence; Reference to specific / complementary base-pairing;
(e) Taking samples from animals causes stress / injury to animal;

Difficult to find animals;

Pandas are dangerous / threat to human;
[15] (a) 1. DNA is cut;

8
2. using restriction enzyme;
3. electrophoresis;
4. separates according to length / mass / size;
5. DNA made single-stranded;
6. transfer to membrane / Southern blotting;
7. apply probe;
8. radioactive / single stranded / detected on film / fluorescent;
9. reference to tandem repeats / VNTRs / minisatellites;
10. pattern unique to every individual;
$6 \max$
(b) cells on toothbrush;

DNA present in cell;
(c) (i) toothbrush gives small sample of DNA / need more DNAfor analysis; PCR gives many copies;
(ii) uses heat;to separate strands;

OR
PCR replicates pieces of DNA;
because DNA has been cut;
OR
primer added in PCR;
to initiate replication
2 max
(d) (i) PCR / amplification needed;
(ii) other DNA present; need to identify 'required' DNA from rest;
[15] (a) Mother and father both heterozygotes / Tt / carriers;

Probability of thalassaemia $1 / 4$ and female $1 / 2$;
Probability of both $1 / 8$;
(b) (i) Cut at same base sequence as same enzyme used;

Fragments are same length / size / have same charge;
(ii) Single base occurs many times;

Sequence of 20 unlikely to occur elsewhere;

Allow one mark for establishing the principle where neither marking point clearly made.
[7] (a) (i) Different genes / characteristics / features;

Reference to mutations;
Or
Base sequence determines protein;
Different species have different protein sequences;
$\max 2$
(ii) Primer has different DNA sequence;

DNA specific / complementary base-pairing;
(c) 1 Heat DNA;

2 Breaks hydrogen bonds / separates strands;
3 Add primers;
4 Add nucleotides;
5 Cool;
6 (to allow) binding of nucleotides / primers;
7 DNA polymerase;
8 Role of (DNA) polymerase;9 Repeat cycle many times;
$\max 6$
[15] (a) Endonuclease / restriction enzyme;
(b) DNA made of base pairs;

Each base pair is same length / occupies same distance along backbone;
(c) (i) Second blank box from left labelled 6;
(ii) Distance moved depends on length / number of base pairs /second longest fragment / second shortest distance identified;
(d) 5 ;
[6] (a) only small amounts obtained / PCR increases the amount / mass of DNA;
12
(b) (i) to separate the two strands of the DNA /to break the hydrogen bonds;
(Reject "unzip")
(ii) short lengths / fragments of DNA / nucleotides /single stranded DNA;
(iii) to mark beginning and / or ends of the part of DNA needed /for attachment of enzymes or nucleotides / initiator / keeps strands apart;
(iv) would not be denatured;must be heated to $95^{\circ} \mathrm{C} /$ must withstand high temps;
(c) 1 DNA extracted from sample;

2 DNA cut / hydrolysed into segments using restriction endonucleases;
3 must leave minisatellites / required core sequences intact;
4 DNA fragments separated using electrophoresis;
5 detail of process e.g. mixture put into wells on gel and electric current passed through;
6 immerse gel in alkaline solution / two strands of DNA separated;
7 Southern blotting / cover with nylon / absorbent paper (to absorb DNA);
8 DNA fixed to nylon / membrane using uv light
9 radioactive marker / probe added (which is picked up by required fragments) / complementary to minisatellites;
10 (areas with probe) identified using X-ray film / autoradiography;
(d) adult 3;this is only one which, (with number 1), can provide (all) the DNA fragments which children have / all bars match;
(Reject 'genes')

1 DNA heated to 90 to $95^{\circ} \mathrm{C}$;

13

2 strands separate;
3 cooled / to temperature below $70^{\circ} \mathrm{C}$
4 primers bind;
5 nucleotides attach;
6 by complementary base pairing;
7 temperature $70-75^{\circ} \mathrm{C}$;
8 DNA polymerase joins nucleotides together;
9 cycle repeated;
6 max
[6] (a) to separate the two strands / break hydrogen bonds;
(b) (i) enables replication / sequencing to start (allow keeps strands separate);
(ii) joins DNA nucleotides (not complementary bases);
(c) (i) 64;
(ii) replication of DNA from crime scene / tissue sample /for DNA sequencing / gene cloning;
(d) (transcription uses) RNA polymerase;RNA nucleotides / uracil; one (template) strand / PCR both strands; start / stop codons;
(accept enzyme separates strands)
[7] (a) (i) to separate polynucleotide strands / form single strands;

15

(ii) not denatured (at $\left.95^{\circ} \mathrm{C}\right)$;
(iii) for binding of primers / nucleotides (to DNA strands);
(b) (i) doubling (of DNA) each cycle; but very low numbers to start with, so appears flat then exponential growth;
(ii) suggestion; with explanation e.g.:
nucleotides being used up; so less / nothing to make complementary chains;
primers used up; so cannot start
complementary chains;
enzymes losing activity / denatured; so no polymerisation of complementary strands;

