Mark schemes

(a) (i) Does not code for amino acid/tRNA/rRNA;

1

_ _ _ _ ,

Accept 'does not code for production of protein/polypeptide' Reject 'that produces/makes amino acid'

- Deletion mutation; Accept 'deletion' Ignore references to splicing
- (b) (The) polymerase chain reaction; Accept PCR

1

1

1

- (c) 1. Probes are single stranded / have a specific base sequence;
 - 2. Complementary base sequence on (specific) spacer

OR

(ii)

- 3. Complementary/specific to (particular) spacer;
- 4. (In white squares probe) binds (to single-stranded spacer) and glows/produces light/fluoresce;
 - 2. Need idea of complementary to spacer
 - 3. Accept converse for dark squares

3

- (d) 1. To see if strain is resistant to any antibiotics;
 - 2. So can prescribe effective/right antibiotic;

OR

- 3. To see whether (any) vaccine works against this strain/ seewhich vaccine to use/ to produce specific vaccine;
- 4. (So) can vaccinate potential contacts/to stop spread;

OR

- 5. Can test other people to see if they have the same strain/ totrace where people caught TB;
- 6. Allowing control of spread of disease/vaccinate/treat contacts (of people with same strain) before they get TB;

Do not allow mix and match of points from different alternative pairs

2 max

(a) 1. Cut (DNA) at same (base) sequence / (recognition) sequence;

Accept: cut DNA at same place

- (So) get (fragments with gene) R / required gene.
 Accept: 'allele' for 'gene' / same gene
- (b) 1. Each has / they have a specific base sequence;
 2. That is complementary (to allele r or R). Accept description of 'complementary'

2

2

 (c) 1. Fragments L from parent rr, because all longer fragments / 195 base pair fragments;

> Ignore: references to fragments that move further / less, <u>require</u> identification of longer / shorter or 195 / 135 Accept: (homozygous) recessive

2. Fragments N from parent RR, because all shorter fragments / 135 base pairfragments;

1 and 2 Accept: A3 for 195 and A4 for 135

- 2. Accept: (homozygous) dominant
- 3. (M from) offspring heterozygous / Rr / have both 195 and 135 base pairfragments.
 Accept: have both bands / strips Reject: primer longer / shorter

3

2

2

- (d) 1. (Cells in mitosis) chromosomes visible;
 2. (So) can see which chromosome DNA probe attached to.
- (e) (i) 1. For comparison with resistant flies / other (two) experiments / groups;
 Ignore: compare results / data / no other factors
 - To see death rate (in non-resistant) / to see effect of insecticide in non-resistant / normal flies. Accept: 'pesticide' as 'insecticide' Accept to see that insecticide worked / to see effect of enzyme
 - (ii) (PM must be involved because)
 - 1. Few resistant flies die (without inhibitor);
 - 2. More inhibited flies die than resistant flies;
 - 3. (PM) inhibited flies die faster (than resistant flies);
 - (Other factors must be involved because)
 - 4. Some resistant flies die;
 - 5. But (with inhibitor) still have greater resistance / die slower thannon-resistant flies.

2

[15] (a) Reverse transcriptase;

3			1										
	(b)	1. Probe (base sequence) complementary (to DNA of allele A / where A is (and) binds by forming base pairs / hydrogen bonds; <i>Accept gene A</i>											
		 So (only) this DNA labelled / has green dye / gives out (green) light; Accept glows for green light 											
	(c)	(i) 1. More probe binding / more cDNA / mRNA / more allele / gene A meansmore light;											
			2. DNA (with A) doubles each (PCR) cycle;										
			 So light (approximately) doubles / curve steepens more and more (eachcycle) / curve goes up exponentially / increases even faster; 3 										
		(ii)	(G because)										
			 (Heterozygous) only has half the amount of probe for A attaching / only half the amount of DNA / allele A (to bind to); Accept only one A to bind to 										
			 (So,) only produced (about) half the light / glow / intensity (of H) (per cycle of PCR); If reference to 'half' for point 1, allow 'less light' in 2. 										
4			[8] (a) (i) 1. Negative correl	ation;									
			Accept: description for 'negative correlation' Neutral: 'correlation' Reject: positive correlation										
			2. Wide range;										
			3. Overlap;										
			 4. (Graph suggests that) other factors may be involved (in age of onset); 2 / 3 Accept the use of figures from the graph 2 / 3 Can refer to age of onset or number of CAG repeats Ignore references to methodology 3 max 										

		(ii)	1.	Age of onset can be high / symptoms appear later in life; Accept: 'gene' for 'allele'	
			2.	(So) individuals have already had children / allele has been passed on;	
			OR		
			3.	Individuals have passed on the allele / already had children;	
			4.	Before symptoms occur; 2 n	nax
	(b)	(i)	1.	Person K ;	
			2.	(As has) high(est) band / band that travelled a short(est) distance / (er) so_has large(st) fragment / number of CAG repeats; <i>Must correctly link</i> distance moved and fragment size	2
		(;;;)	Dun	fragments of known longth / CAC repeats (at the same time):	
		(11)	Run	Accept: references to a DNA ladder / DNA markers	
				Do not accept DNA sequencing	
					1
		(iii)	Hom	ozygous / (CAG) fragments are the same length / size / mass;	
				Accept: small fragment has run off gel / travelled further	1
					-
] (a)	1.	Car	riers are heterozygous / have one normal copy and one mutant copy of gene /	
5 ha	ave or	ne rec	essive	allele / don't have the condition;	
		2.	Both h carrie	nave DNA that binds (about) half / 50% amount of probe (that non- rdoes);	
		3.	Probe one co	binds to dominant / healthy allele so only one copy of exon in their DNA /have opy of gene without exon / base sequence for probe to bind to;	
				3. Accept normal and gene	
				3. Accept have <u>a</u> deletion mutation	3
	(b)	1. code	Intro e for a	ns not translated / not in mRNA / (exons) code for amino acids / introns donot mino acids;	
				1. Accept not expressed	
			1.	Accept polypeptide / protein for amino acids	
			2.	Mutations of these (exons) affect amino acid sequences (that produce) faultyprotein / change tertiary structure of protein;	
				2. Accept deletion leads to frameshift	
			2.	In this context, accept affects protein made	

[9

3. So important to know if parents' exons affected, rather than any other part of

DNA / introns;

Accept converse arguments involving - eg introns do not code for amino acids / proteins Reject references to making amino acids, once

- (c) 1. Restriction mapping / described;
 - 2. DNA / base sequencing (of fragments) / description / name of method;

[8] (a) 1. Closer the (amino acid) sequence the closer the relationship;

3

2

2

[4]

6

- (Protein structure) related to (DNA) base / triplet sequence;
 Amino acid sequence is related to (DNA) base / triplet sequence = two marks;
- (b) 1. Reference to base triplets / triplet code / more bases than amino acids / longer base sequence than amino acid sequence;

Different (base) triplets code for same amino acids = 2 marks; Degeneracy of triplet code = 2 marks

2. Introns / non-coding DNA / degeneracy of code / more than one code for each amino acid;

Ignore reference to codon.

Essay Using DNA in science and technology

7

DNA and classification

- 2.2 Structure of DNA
- 2.3 Differences in DNA lead to genetic diversity
- 2.9 Comparison of DNA base sequences

Genetic engineering and making useful substances

2.5 Plasmids

5.8 The use of recombinant DNA to produce transformed organisms that benefit humans

Other uses of DNA

2.5 Cell cycle and treatment of cancer

5.8	Gene	the	rapy;
-----	------	-----	-------

Medical diagnosis and the treatment of human disease;

The use of DNA probes to screen patients for clinically important genes.

To cut the DNA; (a) (i)

8			Reject breakdown, cutting out	
		(ii)	To separate the (pieces of) DNA;	1
	(b)	Con Labe	nplimentary base sequence / complementary DNA; binds to both (haplotypes); el would show up in both; Idea of complimentarity required	-
	(c)	(i)	Y chromosome inherited / comes from male parents / only found in males;	2
		(ii)	Mitochondria in egg / female gamete / no mitochondria come from sperm / malegamete;	1
	(d)	(i)	Allows comparison; Different (sized) areas covered;	2
		(ii)	Wolves do not eat all of prey animal / do not eat (large) bones / skin; Inedible parts make up different proportions / wolf eats different proportions;	2
	(e)	Lim Larg	ited by food / prey; as prey increases so do wolf numbers / positive correlation; e range so other factors involved;	2
9	(a)	Rest	triction (enzyme / endonuclease);	1
	(b)	Mov	e towards anode / move because charged;	

Different rates of movement related to charge / size;

(c) (i) Piece of DNA; 2

[12]

			Single stranded; Complementary to / binds to known base sequence / gene;	max 2	
		(ii)	DNA invisible on gel / membrane; Allows detection;	2	
			[7] (a) Mother and father both heterozygotes /	Tt / carri	ers;
10		Prob Prob	bability of thalassaemia 1/4 and female 1/2; bability of both 1/8;		
				3	
	(b)	(i)	Cut at same base sequence as same enzyme used; Fragments are same length / size / have same charge;	2	
		(ii)	Single base occurs many times; Sequence of 20 unlikely to occur elsewhere; Allow one mark for establishing the principle where neither marking point clearly made.		
			[7] (a) Endonuclease / restricti	2 on enzy	me;
11				1	
	(b)	DNA Each along	A made of base pairs; h base pair is same length / occupies same distance g backbone;	2	
	(c)	(i)	Second blank box from left labelled 6;	2	
		(ii)	Distance moved depends on length / number of base pairs / second longest fragment / second shortest distance identified;	1	
	(d)	5;		1	[0]
12	(a)	(i)	Different genes / characteristics / features;		[6]
			Reference to mutations; Or Base sequence determines protein; Different species have different protein sequences;	max 2	

		(ii)	Primer has different DNA sequence; DNA specific / complementary base-pairing;	2
		(iii)	Electrophoresis separates DNA; (So they can be) identified by position on gel; Smaller / shortest fragments travel furthest / quicker / or reverse argument;	3
	(b)	(<i>con</i> Each	<i>ventional</i>) Many lengths / all DNA / (<i>new</i>) one length; n rung is DNA of one / specific length;	2
	(c)	1 He 2 Bre 3 Add 4 Add 5 Cod 6 (to 7 <u>DN</u> 8 Rol	eat DNA; eaks hydrogen bonds / separates strands; d primers; d nucleotides; ol; allow) binding of nucleotides / primers; <u>IA</u> polymerase; le of (DNA) polymerase;9 Repeat cycle many times;	
			[15] (a) 1 (DNA altered by	max 6
13		2 (m 3 of 4 of 5 ch 6 (tu 8 un 9 ma	nutation) changes base sequence; gene controlling cell growth / oncogene / that monitors cell division; tumour suppressor gene; ange protein structure / non-functional protein / protein not formed; mour suppressor genes) produce proteins that inhibit cell division;7 mitosis; controlled / rapid / abnormal (cell division); alignant tumour;	max 6
	(b)	canc	er cells die / break open;releasing DNA;	2
	(c)	norm sequ DNA	nal DNA and changed DNA have different iences; only binds to complementary sequence;	2
	(d)	fewe tumo locat	er abnormal / cancerous cells / smaller ours;less cell damage / less spread / fewer tions to treat;	2
	(e)	mRN struc / tum	IA base sequence has changed;gene / DNA cture is different / has mutated; cancer gene active nour suppressor gene inactive;	3

		DNA	from	two sp	ecies	/ 2 <u>typ</u>	<u>bes</u> of c	organisi	ms;							1	
	(ii)	carri	es ger	ne / DN	IA (into	o the o	other o	rganisr	n / gen	e carri	er);					1	
	(iii)	expo survi OR i marl e.g.	se cel ve; dentify ker pro radioa	ls to th / by ac bbe; de ctivity	ne fung Iding n escripti / fluore	gus;no narke ion of escen	n-resis r gene , positivo ce / coi	stant or / gene e result mplemo	nes die probe t entary	, resist / (quali <u>base</u> p	ified	ones) ng;	3			2	
(b)	EITH OR 2 usi 3 cut 4 wit 5 ref 6 use 7 ret 8 use	HER ing DN t plasn h (san stick e (DN urn pla e of C	1 cu 2 us 1 use 2 an 1 ma IA pol nid op ne) re y ends A) liga asmid a ²⁺ / c	t desir ng res mRN d use r ke artii ymeras en; striction s / unpa se to ju to (bao alcium	ed ger trictior A from reverse ficial D se; n endo aired b oin / re cterial) salts /	ne (fro n endo n oat v e trans DNA w DNA w DNA w DNA w DNA w DNA w DNA w DNA w	m DNA onuclea which w scriptas ith corr ase / re attache tion; ; ric sho	A) of oa ase / re vill code se to fo rect sec estrictio ed; ck;	at plant strictio e for re orm des quence on enzy	; n enzy sistand sired D of bas yme; (if re 0] (a)	rme; ce; NA; ses; f. to pro	ʻinsu obe v	ulin' a will a	allow 5 ttach (i max.) to mut) max 6 tant al	lele);
	attac comj film / prese	ches to pleme / X-ray ent);	o <u>one</u> ntary / by a	DNA st base <u>p</u> autorac	trand; <u>airing;</u> diograp	as a r radio ohy (if	esult of activity mutan	f ⁄ detect t allele	ed on							4	
(b)	<u>for g</u> ene is only active in man obtain product / product produ offspring;						y cells in large	/ only a amou	affects nts / ge	milk / o ene pa	easy ssec	/ to d to				1	
	<u>agaii</u> explo shee	<u>nst</u> lor oitatio ep tiss	ig tern n e.g. ues / g	n effec use of genes;	ts not embry	knowr yos / e	n / qual effect of	lified re f inserte	ferenc ed gen	e to an e on o	nima ther	I					
												[6]	(a)	Corre	ect ans	1 swer:	1.25;

14

15

Ignore working

OR (if wrong answer) measurement in µm measurement in mm 40000 40 = 1 mark125 but wrong order of magnitude = 1 mark C has myosin / thick (and actin / thin) filaments; 2 (ii) OR A has only actin / thin (/ no myosin / no thick) filaments; When contracted:

Thick & thin filaments/myosin & actin overlap more;

Interaction between myosin heads & actin / cross-links form;

Movement of myosin head;

Thin filaments / actin moved along thick filaments / myosin;

Movement of thin filaments / actin pulls Z-lines closer together;

Displacement of tropomyosin to allow interaction;

2+ Role of Ca;

Role of ATP;

Allow ref. to 'sliding filament mechanism' / described if no other marks awarded

4 max

1 max

(C) 8 has DMD but 3 and 4 do not / 12 has DMD but 6 and 7 (i) do not / neither parent has the condition but their child has;

Allow parents 3 and 4 give 8, parents 6 and 7 give 12

1

(ii) 4 **AND** 7;

> Parental genotypes: $6 = \mathbf{X}^{D}\mathbf{Y}$ AND $7 = \mathbf{X}^{D}\mathbf{X}^{d}$ 1 (iii)

AND

Gametes correct for candidate's P genotypes - e.g.

16

(b)

 \mathbf{X}^{D} and $\mathbf{Y} + \mathbf{X}^{D}$ and \mathbf{X}^{d} ;

Offspring genotypes correctly derived from gametes e.g.

$$\mathbf{X}^{\mathsf{D}}\mathbf{X}^{\mathsf{D}} + \mathbf{X}^{\mathsf{D}}\mathbf{X}^{\mathsf{d}} + \mathbf{X}^{\mathsf{D}}\mathbf{Y} + \mathbf{X}^{\mathsf{d}}\mathbf{Y};$$

Male offspring with MD correctly identified: $X^{d}Y$;

Probability = 0.25 / correct for candidates offsprings genotypes; Accept ¹/₄ / 1 in 4 / 1:3 / 25% NOT '3:1' / '1:4'

4

1

2

3

1

1

(d) (i) No gene fragment G;

(ii) Only one copy of gene fragment **F**;

Male has only one X-chromosome / is XY (c.f. female has two / is XX);

(iii) 10 has only one copy of gene fragment G;

10 has only one normal X-chromosome / has one abnormal / d D d has only one normal allele / has one X / is X X / is heterozygous;

11 has two normal X-chromosomes / has 2 normal alleles / ^{D D}
^d
is X X / has not got X / has 2 copies of (F and) G;

(e) (i) To prevent rejection / prevent antibody production vs. injected cells / injected cells have (foreign) antigen (on surface);

- Shows effect of <u>cells</u> / not just effect of injection / not just effect of salt solution;
- (iii) Only one person tested so far need more to see if similar results /need more to see if reliable;

Need to assess if new (dystrophin positive) muscle fibres are functional / if muscle becomes functional;

Can't tell how widespread effect is in the muscle / sample taken near injection site;

Need to test for harmful side effects;

Need to test if successful for other mutations of dystrophin gene;

Need to assess permanence / longevity of result/insufficient time allowed in investigation;

(In this patient) only small response / %;

Further sensible suggestion;

4 max

[25] (a) Cocaine (binding) changes shape of transporter/prevents dopamine binding;

17

Reject references to active site

	Transporter cannot move (bound) dopamine (through membrane / protein / into cell);									
	Dopa	amine remains / builds up in synapses (leading to feelings of pleasure);	3							
(b)	(i)	Polymerase chain reaction / PCR;	1							
	(ii)	Single-stranded DNA;								
		Reject reference to a single strand of DNA								
		Bases / sequence complementary to DNA / gene to be identified;								
		(Radioactively / fluorescent) labelled so that it can be detected;	2 max							
(c)	Muta	ation changes base sequence of gene / DNA;								
		Accept references to active site								
	(Thus) changing amino acid sequence; Changes tertiary structure / shape of protein/transporter; Cocaine binding site changes/cocaine cannot bind; Dopamine can still bind (and be transported);									

3 max

[9]