Mark schemes

1	(a)	1.	(If injected into egg), gene gets into all / most of cells of silkworm;	
-		2.	So gets into cells that make silk.	2
	(b)	1. that	Not all eggs will successfully take up the plasmid;2. Silkworms have taken up gene will glow.	2
	(c)	Pror	moter (region / gene).	1
	(d)	1. cau	So that protein can be harvested;2. Fibres in other cells might se harm.	
			[7] (a) 1. Cut (DNA) at same (base) sequence / (recognition) s	2 eauence:
2				,
2			Accept: cut DNA at same place	
		2.	(So) get (fragments with gene) R / required gene.	
			Accept: 'allele' for 'gene' / same gene	2
	(b)	1. (to a	Each has / they have a specific base sequence;2. That is complementary allele r or R). <i>Accept description of 'complementary'</i>	2
	(c)	1. pair	Fragments L from parent rr, because all longer fragments / 195 base	
		·	Ignore: references to fragments that move further / less, <u>require</u> identification of longer / shorter or 195 / 135 Accept: (homozygous) recessive	
		2.	Fragments N from parent RR, because all shorter fragments / 135 base pairfragments;	
			1 and 2 Accept: A3 for 195 and A4 for 135	
			2. Accept: (homozygous) dominant	
			 (M from) offspring heterozygous / Rr / have both 195 and 135 base pairfragments. 	
			Accept: have both bands / strips	
			Reject: <u>primer</u> longer / shorter	3
	(ام)	4	(Calle in mitoria) chromosomes visible:	
	(a)	Ι.		

2. (So) can see which chromosome DNA probe attached to.

	(e)	(i)	 For comparison with resistant flies / other (two) experiments / groups; 	
			Ignore: compare results / data / no other factors	
			 To see death rate (in non-resistant) / to see effect of insecticide in non-resistant / normal flies. Accept: 'pesticide' as 'insecticide' 	
			Accept to see that insecticide worked / to see effect of enzyme	
		(ii)	 (PM must be involved because) 1. Few resistant flies die (without inhibitor); 2. More inhibited flies die than resistant flies; 3. (PM) inhibited flies die faster (than resistant flies); (Other factors must be involved because) 4. Some resistant flies die; 5. But (with inhibitor) still have greater resistance / die slower thannon-resistant flies. Accept: (with inhibitor) die slower than non-resistant flies 	
			4 max [15] (a) (i) Restriction endonucle	ease:
2			()	
ა			I	
		(ii)	(DNA) ligase; 1	
	(b)	(For	those plants that contained the desired gene in thenucleus/plant DNA)	
		1. 2. 3.	 (DNA of desired gene) copied/replicated with host DNA/insidenucleus; Passed on by mitosis/plant grows by mitosis; Produces genetically identical cells/clones; Ignore references to protein synthesis or plasmids not taking up the gene 1. Accept DNA replication during mitosis 1. and 2. Accept converse for plants with the gene in the cytoplasm 3. Neutral 'identical unqualified' 3. Accept description, e.g., DNA is the same 	
	(c)	1. acid: 2. 3.	 Genetic code is universal/triplets in DNA always code forsame amino It/insect DNA can be transcribed; Can be translated (process/mechanism same in allorganisms/cells); 2. Accept (basic) transcription (process/mechanism) same in all organisms/cells; 2. Accept descriptions of process 	
			3. Accept descriptions of process	
			3	

(a) Reverse transcriptase;

- (b) 1. Probe (base sequence) complementary (to DNA of allele A / where A is (and) binds by forming base pairs / hydrogen bonds; *Accept gene A*
 - 2. So (only) this DNA labelled / has green dye / gives out (green) light; *Accept glows for green light*
- (c) (i) 1. More probe binding / more cDNA / mRNA / more allele / gene A meansmore light;
 - 2. DNA (with A) doubles each (PCR) cycle;
 - 3. So light (approximately) doubles / curve steepens more and more (eachcycle) / curve goes up exponentially / increases even faster;
 - (ii) (G because)
 - 1. (Heterozygous) only has half the amount of probe for **A** attaching / only half the amount of DNA / allele A (to bind to); *Accept only one A to bind to*
 - (So,) only produced (about) half the light / glow / intensity (of H) (per cycle of PCR);
 If reference to 'half' for point 1, allow 'less light' in 2.
 - [8] (a) 1. Adenylate cyclase activated / cAMP produced / second messenger produced;

5

- 3. Activates enzyme(s) (in cell so) glycogenolysis / gluconeogenesis occurs /glycogenesis inhibited;
 - 2. Neutral: 'glucose produced' as given in the question stem Accept: correct descriptions of these terms
- (b) (i) 1. Glucose / sugar in food would affect the results;
 - 1. Accept references to starch / carbohydrateOr
 - Food / eating would affect blood glucose (level);
 Or
 - 3. (Allows time for) blood glucose (level) to return to normal;3. Neutral: allows time for insulin to act

1 max

2

3

2

2

(ii) Type 2 diabetes is a failure to respond to insulin / still produces insulin / is notinsulindependent;

- (iii) (For) 3 max
 A maximum of three marks can be awarded for each side of the argument
 - 1. Avoids injections / pain of injections;
 - 2. Long(er) lasting / permanent / (new) cells will contain / express gene; *Ignore* references to methodology e.g. sample size not known
 - 3. Less need to measure blood sugar / avoids the highs and lows in bloodsugar;
 - 4. Less restriction on diet;

(Against) – 3 max

- 5. Rats are different to humans;
- 6. May have side effects on humans;
- 6. Accept: virus may be harmful / disrupt genes / cause cancer
- 7. Long(er) term effects (of treatment) not known / may have caused effectsafter 8 months;
- 8. (Substitute) insulin may be rejected by the body;

	4 max
[8] (a)	Restriction / endonuclease;

6

Ignore specific names of restriction enzymes e.g. EcoR1

- (b) (i) 1. (Acts as a) marker gene to show that the (human) gene has been takenup / expressed;
 - 1. Accept: gene marker
 - (Only) implant cells / embryos that show fluorescence / contain thejellyfish gene;
 - (ii) 1. Factor IX present in / extracted from milk;
 - 2. Gene only expressed in mammary glands / udder / gene not expressed elsewhere;
 - 2. Ignore references to milk The 'only' aspect is important here.
 - 3. Do not need to kill sheep (to obtain Factor IX);

2 max

1

2

 (c) (i) 1. Mutation / nucleus / chromosomes / DNA may be damaged / disruptsgenes;

2. May interfere with proteins (produced) / gene expression / translation; Ignore references to hormone levels or time of implantation OR 3. Embryo / antigens foreign; 3. Neutral: antigens change 4. Embryo is rejected / attacked by immune system; 4. sNeed idea that the immune system is involved if mark point 3 has not been given 'Embryo foreign so rejected' = 2 marks 'Embryo rejected by immune system' = 1 mark 'Embryo is rejected' = 0 marks 2 max (ii) 1. Saves time / money for others; 2. Same work is not repeated / methods can be compared / improved / amended / same errors are not made; 2 [9] (a) 1. No effect at 25°C The question only refers to plants with GB 1. Reject same mass 2. Keeps growing at 30°C and 35°C / up to 35°C (more than without GB); З. Above 35°C, falls but grows more than plant without GB; 3. Accept at all temperatures above 25°C more growth than without GB 2 max (b) (i) Significantly different / SEs do not overlap ; Accept converse without GB 1 (As temperature increases,) (ii) Enzyme activity reduced / (some) enzymes denatured; 1. 2. Less photosynthesis, so fewer sugars formed;

Less respiration / less energy / ATP for growth;

7

3.

1.

Neutral: cell may be damaged

Less energy for named function associated with growth *4. Eg mitosis, uptake of mineral ions*

(c) 1. (Rubisco activase attaches to thylakoid and) this changes shape / tertiarystructure (of enzyme) / blocks active site / changes active site;

Note - question states enzyme stops working when it attaches to thylakoid, not before

- 1. Accept rubisco in this context
- 2. (This) prevents substrate / RuBP entering active site / binding;
 - 2. Accept prevents ES complex forming
 - 2. Accept no longer complementary to substrate / RuBP

2

4

- (d) 1. GB prevents / reduces binding of rubiscoactivase to (thylakoid membrane);
 - 1. Accept enzyme instead of rubiscoactivase. Accept rubisco
 - 2. (Prevents it) up to 35°C;
 - 3. (So) rubiscoactivase / enzyme remains active;
 - 4. (So) photosynthesis / light-independent stage still happens;
 - 4. Accept descriptions of light-independent stage
 - 5. Above 35°C, some binding still occurs but less than without GB, so less reduction in growth;

- (e) 1. Looked for information / journals, on crop plants that grow at high temperatures;
 1. "other research" is minimum accepted
 - Accept previous experiments research with temperature resistantcrops Ignore simple references to looking at previous studies / other plants - need to relate to this context
 - 2. (Crop plants cited in this research) contain / make GB;
 - 3. So assumed making plants produce GB makes them resistant to hightemperatures;

2 max

[15] (a) restriction (enzyme) / endonuclease / named example;

8

 (b) unpaired bases / sticky ends / staggered;complementary / explained; (c) 1 mark for each correct outcome plasmid with foreign DNA joined in ring; ring with plasmid only; ring of foreign DNA only; *ignore linear structures*

[6] (a) 1. Closer the (amino acid) sequence the closer the relationship;

- (Protein structure) related to (DNA) base / triplet sequence;
 Amino acid sequence is related to (DNA) base / triplet sequence = two marks;
- 2

2

[4]

3

 (b) 1. Reference to base triplets / triplet code / more bases than amino acids / longer base sequence than amino acid sequence;

Different (base) triplets code for same amino acids = 2 marks; Degeneracy of triplet code = 2 marks

2. Introns / non-coding DNA / degeneracy of code / more than one code for each amino acid;

Ignore reference to codon.

10

(a)

(i)

9

1. Negative correlation;

Accept: description for 'negative correlation' Neutral: 'correlation' Reject: positive correlation

- 2. Wide range;
- 3. Overlap;
- 4. (Graph suggests that) other factors may be involved (in age of onset);
 2 / 3 Accept the use of figures from the graph
 2 / 3 Can refer to age of onset or number of CAG repeats
 Ignore references to methodology
 3 max
- (ii) 1. Age of onset can be high / symptoms appear later in life; Accept: 'gene' for 'allele'
 - 2. (So) individuals have already had children / allele has been passed on;

OR

- 3. Individuals have passed on the allele / already had children;
- 4. Before symptoms occur;

2

1

1

- (b) (i) 1. Person **K**;
 - (As has) high(est) band / band that travelled a short(est) distance / (er) so has large(st) fragment / number of CAG repeats; *Must correctly link* distance moved and fragment size
 - (ii) Run fragments of known length / CAG repeats (at the same time); Accept: references to a DNA ladder / DNA markers Do not accept DNA sequencing
 - (iii) Homozygous / (CAG) fragments are the same length / size / mass; Accept: small fragment has run off gel / travelled further

[9]

Essay Using DNA in science and technology

DNA and classification

2.2 Structure of DNA

11

12

- 2.3 Differences in DNA lead to genetic diversity
- 2.9 Comparison of DNA base sequences

Genetic engineering and making useful substances

- 2.5 Plasmids
- 5.8 The use of recombinant DNA to produce transformed organisms that benefit humans

Other uses of DNA

- 2.5 Cell cycle and treatment of cancer
- 5.8 Gene therapy;

Medical diagnosis and the treatment of human disease;

The use of DNA probes to screen patients for clinically important genes.

(a) (i) protein / immunoglobulin;

specific to antigen; idea of 'fit' / complementary <u>shape;</u>

	(ii)	 virus contains antigen; virus engulfed by phagocyte / macrophage; presents antigen to B-cell; memory cells / B-cell becomes activated; (divides to) form clones; by mitosis; plasma cells produce antibodies; antibodies specific to antigen; correct reference to T-cells / cytokines; 	6 max	
(b)	1. ai 2. ct 3. at 4. le 5. ct 6. jo 7. in	ntibody gene located using gene probe; ut using restriction enzyme; t specific base pairs; eaving sticky ends / unpaired bases; ut maize / DNA / vector using same restriction enzyme; bin using DNA ligase; atroduce vector into maize / crop / recombinant DNA into maize;	4 max	
(c)	pass proc	sive / person is not making own antibodies / antibodies not replaced;memory cells duced;	not	
(d)	fewe	er ethical difficulties / less risk of infection;	2	[15]
(a)	Res	striction (enzyme / endonuclease);		
			1	
(b)	Mov	ve towards anode / move because charged;		
	Diffe	erent rates of movement related to charge / size;	2	
(c)	(i)	Piece of DNA; Single stranded; Complementary to / binds to known base sequence / gene;	max 2	
	(ii)	DNA invisible on gel / membrane; Allows detection;		
		[7] (a) (i) Reverse tra	2 Inscrip	tase;
			1	

 (ii) Idea that mRNA is present in large amounts in cell making the protein / mRNA has been edited / does not contain introns / mRNA codes for single protein;

13

	(b)	(Liga	ase) splices / joins two pieces of DNA / "sticky ends";			
				[3] (a)	(i)	I <u>Sticky ends</u> / description;
15			Reference to complementary base-pairing			2
		(ii)	Ligase;			1
	(b)	Carı Into	tier of DNA / gene; <i>(context of foreign DNA)</i> cell / other organism / host;			2
	(c)	Act : Allov	as marker gene; ws detection of cells containing plasmid / DNA;			2
16	(a)	(i)	Different genes / characteristics / features;			[7]
10			Reference to mutations; Or Base sequence determines protein; Different species have different protein sequences;			max 2
		(ii)	Primer has different DNA sequence; DNA specific / complementary base-pairing;			2
		(iii)	Electrophoresis separates DNA; (So they can be) identified by position on gel; Smaller / shortest fragments travel furthest / quicke reverse argument;	r / or		3
	(b)	(<i>cor</i> Eacl	oventional) Many lengths / all DNA / (<i>new</i>) one length; n rung is DNA of one / specific length;	;		2
	(c)	1 He 2 Br 3 Ac 4 Ac 5 Cc 6 (to 7 <u>DN</u> 8 Rc	eat DNA; eaks hydrogen bonds / separates strands; ld primers; ld nucleotides; pol; allow) binding of nucleotides / primers; <u>VA</u> polymerase; ple of (DNA) polymerase;9 Repeat cycle many times;			may 6
					<i>(</i> 1)	

17		Refer	ence to complementary base-p	airing		2
		(ii) Ligase	Э;			1
	(b)	Carrier of D Into cell / ot	NA / gene; <i>(context of foreign L</i> her organism / host;	DNA)		2
	(c)	Act as mark Allows dete	ker gene; ction of cells containing plasmic	d / DNA;		2
4.0			[7] (a)	Mother and father b	oth heterozygotes / Tt /	carriers;
18		Probability of Probab	of thalassaemia 1/4 and female of both 1/8;	1/2;		3
	(b)	(i) Cut at Fragn	t same base sequence as same nents are same length / size / h	e enzyme used; ave same charge;		2
		(ii) Single Seque Allow point	e base occurs many times; ence of 20 unlikely to occur else one mark for establishing the p clearly made.	ewhere; principle where neither i	marking	
				[7] (a) End	donuclease / restriction	2 enzyme;
19						1
	(b)	DNA made Each base along backt	of base pairs; pair is same length / occupies s pone;	ame distance		2
	(c)	(i) Secor	nd blank box from left labelled 6	;;		1
		(ii) Distar secon	nce moved depends on length / nd longest fragment / second sh	number of base pairs / ortest distance identifie	ed;	1
	(d)	5;		[6] (a)	1 (DNA altered by) r	1 nutation;

(b)

(c)

(d)

(e)

- 2 (mutation) changes base sequence;
- 3 of gene controlling cell growth / oncogene / that monitors cell division;
- 4 of tumour suppressor gene;
- 5 change protein structure / non-functional protein / protein not formed;
- 6 (tumour suppressor genes) produce proteins that inhibit cell division;7 mitosis;
- 8 uncontrolled / rapid / abnormal (cell division);

cancer cells die / break open; releasing DNA;

normal DNA and changed DNA have different

DNA only binds to complementary sequence;

fewer abnormal / cancerous cells / smaller

/ tumour suppressor gene inactive;

tumours; less cell damage / less spread / fewer

mRNA base sequence has changed;gene / DNA

structure is different / has mutated; cancer gene active

9 malignant tumour;

sequences;

locations to treat:

- mux o

 - 2
 - 2

2

3

3

- [15]
- (a) Presence of resistant and non-resistant varieties / mutation produces resistant variety;

21

- Resistant ones survive / non-resistant ones killed by treatment; These will reproduce and produce more resistant parasites / pass on resistance allele;
- (b) Likelihood of being infected (by strain resistant to both drugs) is less;
 1/500 × 1/500/1/250 000;
 Drug has longer effective life;
- max 2

1

2

- (c) (i) As comparison / to show that nothing else in the treatment was responsible;
 - (ii) Given injections of saline / injection without SPf66;
 (otherwise) treated the same as experimental group;
- (d) (i) 100%; 1
 - (ii) 10%;

	(e)	(i)	Different lengths of DNA have different base sequences / cut at specificsequence; Results in different shape / different shape of active site; Therefore (specific sequence) will only fit active site of enzyme;	
				3
		(ii)	Recognition sites contain only AT pairs; Which would occur very frequently;	2.
			[15] (a) (i) contains genes / nucleotides / sections of DNA /	artificial
22				
			DNA from two species / 2 types of organisms;	1
		(ii)	carries gene / DNA (into the other organism / gene carrier);	1
		(iii)	expose cells to the fungus;non-resistant ones die, resistant ones	
			survive; OR identify by adding marker gang / gang probe / (gualified)	
			marker probe; description of positive result	
			e.g. radioactivity / fluorescence / complementary <u>base</u> pairing;	2
				2
	(b)	EITH	HER 1 cut desired gene (from DNA) of oat plant; 2 using restriction endonuclease / restriction enzyme:	
		OR	1 use mRNA from oat which will code for resistance;	
		OR	2 and use reverse transcriptase to form desired DNA; 1 make artificial DNA with correct sequence of bases:	
		2 usi	ing DNA polymerase;	
		3 cut 4 wit	t plasmid open; (h (same) restriction endonuclease / restriction enzyme;	
		5 ref	. sticky ends / unpaired bases attached;	
		6 use 7 ret	e (DNA) ligase to join / ref. ligation; urn plasmid to (bacterial) cells:	
		8 use	e of Ca^{2+} / calcium salts / electric shock; (if ref. to 'insulin' allow 5 max.)	
			\mathbf{ma}	x 6
			[10] (a) a macrophages present antigens to B lymph	nocytes;
23				
		2	antigen binds to / is complementary to receptors on lymphocyte;	
		4	lymphocytes become competent / sensitised;	
		5	(B) lymphocytes reproduce by <u>mitosis</u> / (B) lymphocytes <u>cloned</u> ; 6 plasma cells	
			4 n	ıax
	(b)	1	restriction enzyme / endonuclease;	
	. /	2	to cut plasmid / to form sticky ends in plasmid;	
		3	(use) ligase(to join) gene to plasmid;	

4 culture bacteria with (in medium containing) plasmids

		5 6 (igno	to allow uptake of plasmids / transformation; use of cold shock / chemical treatment (to enhance uptake) / heat shock; ore bullets / electroporation / microinjection) [7] (a) probe will attach (to mu	3 max tant allele);
04				
24		attac com film / prese	ches to <u>one</u> DNA strand; as a result of plementary base <u>pairing;</u> radioactivity detected on / X-ray / by autoradiography (if mutant allele eent);	4
	(h)	for o	none is only active in mammany cells / only affects milk / easy to	
	(0)	obta	in product / product produced in large amounts / gene passed to	
		offsp	pring;	1
				1
		<u>agai</u> expl	<u>inst</u> long term effects not known / qualified reference to animal	
		shee	ep tissues / genes;	
			ICI (a) (i) transfer (correction on a program to an	1
			[o] (a) (i) transier / carry genes from one organism to an	
25 b	acteri	a / ce	ills;	
				1
		(ii)	cut open plasmid; cut donor DNA, to remove gene / length of DNA; cut donor DNA and plasmid with the <u>same</u> enzyme / enzyme that cuts at the <u>same</u> base sequence; sticky ends / (overhanging) ends with, single strand / bases exposed; association / attachment /	
			pairing of complementary strand,	2 max
		(iii)	annealing / splicing / backbones joined / phosphodiester bonds;	1
	(b)	(i)	L and M;	
				1
		(ii)	fragments 64 and 36(kilobases obtained)	
			[6] (a) (i) restriction (endonucleas	e) enzvme:
_				e, en_jine,
26				
			cuts DNA at specific / restriction points / after specific base sequence;	2

(ii) PCR / polymerase chain reaction;

(b) isolated cells divide by mitosis; can get many plants (producing toxin) / rapid production of (toxin producing) plants; all cells (in the new plant / clone) will produce the toxin; 3 [6] (a) introduction of healthy gene / 'replacement' of defective gene; 27 (b) can enter cells / infect cells / inject DNA into cells;targets specific cells; replicates (in cells); 2 (c) reproductive cells / gamete cells do not contain ADA allele / gene; 1 (d) (i) to 'prevent' rejection / immune response; 1 (ii) T lymphocytes have a limited life span / die off / do not reproduce; bone marrow provides continual supply of T lymphocytes / (ADA) gene enzyme; 2 [7] (a) (cut out gene using an) endonuclease / restriction enzyme; 28 reference to specificity / recognition site; sticky ends; use the same enzyme to cut; plasmid / virus / potato DNA; fixed by ligase; method of introducing vector e.g. micropipette / virus injects DNA / remove plant cell wall; 6 max different genes are expressed; (b) producing different enzymes / proteins; 2 [8] (a) isolate wanted gene / DNA from another organism / mRNA from cell / organism; 29 using restriction endonuclease / restriction enzyme / reverse transcriptase to get DNA and produce sticky ends; use ligase to join wanted gene to plasmid; also include marker gene e.g. antibiotic resistance; add plasmid to bacteria to grow (colonies)then (replica) plate onto medium where the marker gene is expressed; bacteria / colonies not killed have antibiotic resistance gene and (probably) the wanted gene; 6 (b) (i) injection, rapid rise and fall; virus, slower rise and longer in effective / harmful range; capsule slowest rise, longest in effective / harmful range; injection and virus give harmful concentrations but capsule does not;

		(ii)	advantage e.g.: substance never reaches harmful levels / no side effect / less likely to harm the organism, longer relief from symptoms / less frequent treatment needed / longer effective range / longer but without harmful side effects;	1 max
			disadvantage e.g.: takes longer to take effect;	1
			[11] (a) use restriction enzyme / endonuclease / named, e.g.	Bam / Eco;
30 t	o cut I	DNA ir	n specific place / base sequence;	2
	(b)	heat sepa cool (DNA	DNA to 90 – 95 °C;strands arate; add primers; and <u>nucleotides;</u> so that primers bind to DNA; A) polymerase forms new strands / joins nucleotides;	4 max
	(c)	(i) lungs healt	virus is inhaled / sprayed into the s;gets into cells, inserting the thy gene;	2
		(ii)	makes DNA from RNA rather than other way round	1 nlasmid [.]
31			[a] (a) (i)	
		(ii)	the bacteria divide / grow, producing many copies of desiredgene / plasmid; OR the bacteria divide / grow to cover the agar;	µ
		(iii)	plant tissue that has antibiotic resistance survives;identifies plant tissue which has desired gene / plasmid;	1 2
		(iv)	to <u>clone</u> plants / produce <u>genetically</u> identical plants with gene / characteristic; and produce large numbers / quickly;	2
	(b)	(i)	(one reasonable suggestion), e.g. toxin present all the time; save costs of buying / application of spray; no spray drift onto other fields / insects;	
				1 max

		(ii)	(one reasonable suggestion), e.g. killing of harmless / useful insects that feed on wild plants; damage to food chains starting with wild plants;	
			damage to rood oname starting with wha plante,	1 max
			[8] (a) Restriction enzyme / restrict	ion endonuclease;
32				1
	(b)	(i)	A-G-C-T / T-C-G-A; Allow A-G-C-T-T / T-T-C-G-A	1
		(ii)	Joining two pieces of DNA;	-
			By complementary binding/complementary base-pairing;	2
	(c)	(i)	4943;	1
		(ii)	3;	1
		(iii)	2 bands disappear / only 3 bands;	
			New band formed at heavier position/nearer to origin/higher up;	2
22			[8] (a) Cocaine (binding) changes shape of transporter/prevents	dopamine binding;
55			Reject references to active site	
		Tran	sporter cannot move (bound) dopamine (through membrane / protein /	
		Dopa	amine remains / builds up in synapses (leading to feelings of pleasure);	3
	(b)	(i)	Polymerase chain reaction / PCR;	1
		(ii)	Single-stranded DNA; Reject reference to a single strand of DNA	
			Bases / sequence complementary to DNA / gene to be identified;	
			(Radioactively / fluorescent) labelled so that it can be detected;	2 max
	(c)	Muta	ation changes base sequence of gene / DNA; Accept references to active site	

(Thus) changing amino acid sequence;

		Cha Coca Dopa	nges tertiary structure / shape of protein/transporter; aine binding site changes/cocaine cannot bind; amine can still bind (and be transported):		
		Dop		3 max	
			[9] (a) (i) Amount of mRNA > amount of DNA / multipl	e copies of mR	NA;
34					
			Insulin mRNA/the specific mRNA is found in pancreas cells;		
			Introns / non-coding information present in DNA / these removed in mRNA / corr. ref. post-transcriptional modification;		
				2 max	
		(ii)	Enzyme 1 = reverse transcriptase;		
			Enzyme 2 = (DNA)-polymerase;	2	
				2	
		(iii)	Hydrogen (bonds) / H-(bonds);	1	
	(b)	(i)	Primers:		
	()	()		1	
		(ii)	To allow H-bond re-formation / to allow joining of		
			primers/P(and Q) to (single-stranded) DNA / converse re. high temp. breaks H-bonds / prevents joining;		
				1	
		(iii)	To mark region of DNA to be 'copied' / to show enzyme whereto start;		
			(Enzyme) needs starting strand onto which to attach nucleotides;		
			Allow idea of extending pre-existing chain	2	
				2	
		(iv)	32;	1	
					[10]