

3.8 Vector Equations of Lines

Contents

- ✤ 3.8.1 Vector Equations of Lines
- ✤ 3.8.2 Shortest Distances with Lines

3.8.1 Vector Equations of Lines

Equation of a Line in Vector Form

How do I find the vector equation of a line?

- The formula for finding the **vector equation** of a line is
 - $r = a + \lambda b$
 - Where *r* is the **position vector** of any point on the line
 - *a* is the **position vector** of a known point on the line
 - **b** is a **direction** (displacement) **vector**
 - λ is a scalar
 - This is given in the formula booklet
 - This equation can be used for vectors in both 2- and 3- dimensions
- This formula is similar to a regular equation of a straight line in the form Y = MX + C but with a vector to show both a point on the line and the direction (or gradient) of the line
 - In 2D the gradient can be found from the direction vector
 - In 3D a numerical value for the direction cannot be found, it is given as a vector
- As a could be the position vector of any point on the line and b could be any scalar multiple of the direction vector there are infinite vector equations for a single line
- Given any two points on a line with position vectors a and b the displacement vector can be written as b-a
 - So the formula $\mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} \mathbf{a})$ can be used to find the vector equation of the line
 - This is not given in the formula booklet

How do I determine whether a point lies on a line?

• Given the equation of a line
$$\mathbf{r} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} + \lambda \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{pmatrix}$$
 the point \mathbf{c} with position vector $\begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \\ \mathbf{c}_3 \end{pmatrix}$ is on the line if there exists a value of λ such that
• $\begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \\ \mathbf{c}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} + \lambda \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{pmatrix}$

the line if there exists a value of λ such that

$$\begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \\ \mathbf{c}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} + \lambda \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{pmatrix}$$

• This means that there exists a single value of λ that satisfies the three equations:

•
$$c_1 = a_1 + \lambda b_1$$

$$c_2 = a_2 + \lambda b_2$$

• $c_3 = a_3 + \lambda b_3$

- A GDC can be used to solve this system of linear equations for
 - The point only lies on the line if a single value of λ exists for all three equations
- Solve one of the equations first to find a value of λ that satisfies the first equation and then check that this value also satisfies the other two equations
- If the value of λ does not satisfy all three equations, then the point **c** does not lie on the line

a) Find a vector equation of a straight line through the points with position vectors $\mathbf{a} = 4\mathbf{i} - 5\mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} - 3\mathbf{k}$

Use the position vectors to find the displacement vector between them. $\vec{OB} = \begin{pmatrix} 3 \\ 0 \\ -3 \end{pmatrix} \implies \vec{AB} = \begin{pmatrix} 3 \\ 0 \\ -3 \end{pmatrix} - \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$ OA = (o (-5) Vector equation of a line $r = a + \lambda b$ for point a for point b λ ٢ 01 0 direction direction vector vector 405 r =

b) Determine whether the point C with coordinate (2, 0, -1) lies on this line.

Let
$$c = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$$
, then check to see if there exists a value
of λ such that
 $\begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$
From the 'i' component: $4 - \lambda = 2$ ()
From the 'j' component: $0 + 0\lambda = 0$ () () Works for all λ
From the 'k' component: $-5 + 2\lambda = -1$ (3)
() $\Rightarrow \lambda = 2$ sub into (3) $\Rightarrow -5 + (2 \times 2) = -5 + 4 = -1$
Point C Lies on the Line

Equation of a Line in Parametric Form

How do I find the vector equation of a line in parametric form?

• By considering the three separate components of a vector in the *x*, *y* and *z* directions it is possible to write the **vector equation** of a line as **three separate equations**

• Letting
$$\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 then $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ becomes
• $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ m \\ n \end{pmatrix}$
• Where $\begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$ is a position vector and $\begin{pmatrix} 1 \\ m \\ n \end{pmatrix}$ is a direction vector $\begin{pmatrix} 1 \\ m \\ n \end{pmatrix}$

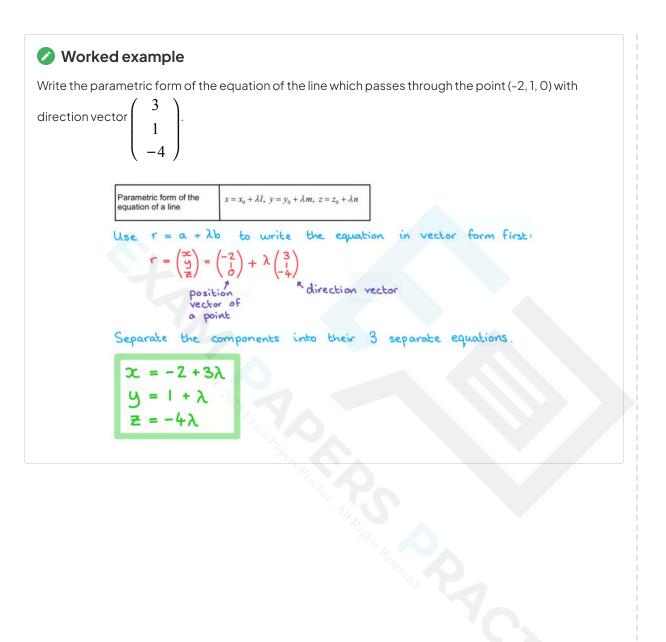
• This vector equation can then be split into its three separate component forms:

•
$$x = x_0 + \lambda l$$

•
$$y = y_0 + \lambda m$$

•
$$z = z_0 + \lambda n$$

• These are given in the formula booklet



Angle Between Two Lines

How do we find the angle between two lines?

- The angle between two lines is equal to the angle between their direction vectors
 It can be found using the scalar product of their direction vectors
- Given two lines in the form $\boldsymbol{r} = \boldsymbol{a}_1 + \lambda \boldsymbol{b}_1$ and $\boldsymbol{r} = \boldsymbol{a}_2 + \lambda \boldsymbol{b}_2$ use the formula

$$\theta = \cos^{-1} \left(\frac{\boldsymbol{b}_1 \cdot \boldsymbol{b}_2}{|\boldsymbol{b}_1|| |\boldsymbol{b}_2|} \right)$$

- If you are given the equations of the lines in a different form or two points on a line you will need to find their direction vectors first
- To find the angle ABC the vectors BA and BC would be used, both starting from the point B
- The intersection of two lines will always create **two angles**, an acute one and an obtuse one
 - A positive scalar product will result in the acute angle and a negative scalar product will result in the obtuse angle
 - Using the absolute value of the scalar product will always result in the acute angle

Worked example

Find the acute angle, in radians between the two lines defined by the equations:

 $I_1: \mathbf{a} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-4\\-3 \end{pmatrix} \text{ and } I_2: \mathbf{b} = \begin{pmatrix} 1\\-4\\3 \end{pmatrix} + \mu \begin{pmatrix} -3\\2\\5 \end{pmatrix}$ STEP 1: Find the scalar product of the direction vectors: $\begin{pmatrix} 1\\-4\\-3 \end{pmatrix} \cdot \begin{pmatrix} -3\\2\\5 \end{pmatrix} = (1x-3) + (-4x2) + (-3x5) = -3 + (-8) + (-15) = -26$ negative, so the angle will be the obtuse angle. STEP 2: Find the magnitudes of the direction vectors: $\sqrt{(-3)^2 + (2)^2 + (5)^2} = \sqrt{38}$ $\sqrt{(1)^{2} + (-4)^{2} + (-3)^{2}} = \sqrt{26}$ STEP 3: Find the angle: $\cos \theta = \frac{|-26|}{\sqrt{26}\sqrt{38}}$ Using the absolute value will result in the acute angle. $\theta = \cos^{-1}\left(\frac{26}{\sqrt{26}\sqrt{38}}\right)$ $\theta = 0.597$ radians (3sf)

3.8.2 Shortest Distances with Lines

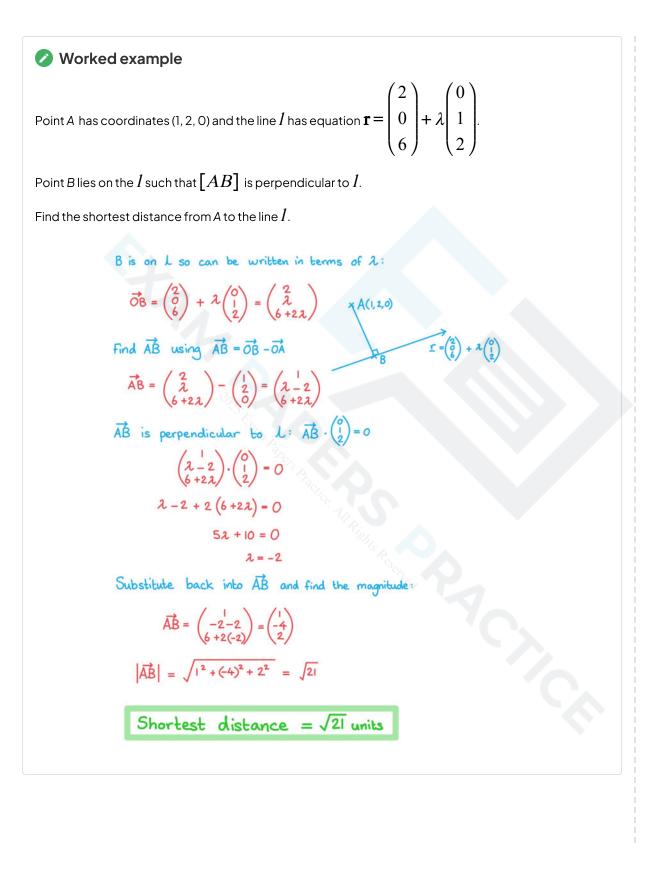
Shortest Distance Between a Point and a Line

How do I find the shortest distance from a point to a line?

- The shortest distance from any point to a line will always be the **perpendicular** distance
 - Given a line *I* with equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ and a point *P* not on *I*
 - The scalar product of the direction vector, b, and the vector in the direction of the shortest distance will be zero
- The shortest distance can be found using the following steps:
 - STEP 1: Let the vector equation of the line be r and the point not on the line be P, then the point on the line closest to P will be the point F
 - The point F is sometimes called the foot of the perpendicular
 - STEP 2: Sketch a diagram showing the line *l* and the points *P* and *F*
 - The vector \overrightarrow{FP} will be **perpendicular** to the line *l*
 - STEP 3: Use the equation of the line to find the position vector of the point F in terms of λ
 - STEP 4: Use this to find the displacement vector FP in terms of λ
 - STEP 5: The scalar product of the direction vector of the line / and the displacement vector FP will be zero
 - Form an equation $\overrightarrow{FP} \cdot \mathbf{b} = 0$ and solve to find λ
 - STEP 6: Substitute λ into \overrightarrow{FP} and find the magnitude $\left|\overrightarrow{FP}\right|$
 - The shortest distance from the point to the line will be the magnitude of $F\!P$
- Note that the shortest distance between the point and the line is sometimes referred to as the **length** of the perpendicular

How do we use the vector product to find the shortest distance from a point to a line?

- The vector product can be used to find the shortest distance from any point to a line on a 2dimensional plane
- Given a point, P, and a line $r = a + \lambda b$
 - The shortest distance from P to the line will be
 - Where A is a point on the line
 - This is **not** given in the formula booklet



Shortest Distance Between Two Lines

How do we find the shortest distance between two parallel lines?

- Two parallel lines will never intersect
- The shortest distance between two **parallel lines** will be the **perpendicular distance** between them
 - Given a line I_1 with equation $\mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{d}_1$ and a line I_2 with equation $\mathbf{r} = \mathbf{a}_2 + \mu \mathbf{d}_2$ then the shortest distance between them can be found using the following steps:
 - STEP 1: Find the vector between \mathbf{a}_1 and a general coordinate from I_2 in terms of μ
 - STEP 2: Set the scalar product of the vector found in STEP 1 and the direction vector d₁ equal to zero
 - Remember the direction vectors d₁ and d₂ are scalar multiples of each other and so either can be used here
 - STEP 3: Form and solve an equation to find the value of μ
 - STEP 4: Substitute the value of μ back into the equation for l_2 to find the coordinate on l_2 closest

to I₁

- STEP 5: Find the distance between **a**₁ and the coordinate found in STEP 4
- Alternatively, the formula $\frac{|\overrightarrow{AB} \times \mathbf{d}|}{|\mathbf{d}|}$ can be used
 - Where AB is the vector connecting the two given coordinates \mathbf{a}_1 and \mathbf{a}_2
 - d is the simplified vector in the direction of d_1 and d_2
 - This is not given in the formula booklet

How do we find the shortest distance from a given point on a line to another line?

- The shortest distance from any point on a line to another line will be the **perpendicular** distance from the point to the line
- If the angle between the two lines is known or can be found then right-angled trigonometry can be used to find the perpendicular distance

• The formula $\frac{\left|\overrightarrow{AB} \times \mathbf{d}\right|}{\left|\overrightarrow{AB} \times \mathbf{d}\right|}$

given above is derived using this method and can be used

 Alternatively, the equation of the line can be used to find a general coordinate and the steps above can be followed to find the shortest distance

How do we find the shortest distance between two skew lines?

- Two **skew** lines are not parallel but will never intersect
- The shortest distance between two skew lines will be perpendicular to both of the lines
 - This will be at the point where the two lines pass each other with the perpendicular distance where the point of intersection would be

- The **vector product** of the two direction vectors can be used to find a vector in the direction of the shortest distance
- The shortest distance will be a vector **parallel** to the vector product
- To find the shortest distance between two skew lines with equations $\mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{d}_1$ and $\mathbf{r} = \mathbf{a}_2 + \mu \mathbf{d}_2$,
 - STEP 1: Find the vector product of the direction vectors $\, {\bm d}_1^{} \,$ and $\, {\bm d}_2^{} \,$

$$\bullet \mathbf{d} = \mathbf{d}_1 \times \mathbf{d}_2$$

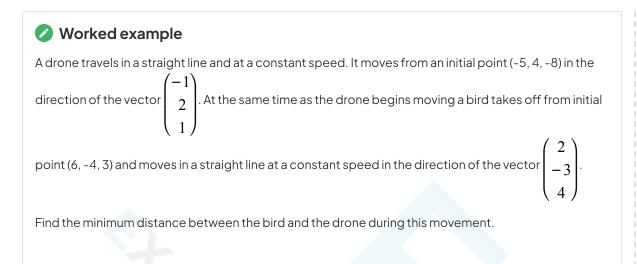
• STEP 2: Find the vector in the direction of the line between the two general points on I_1 and I_2 in terms of λ and μ

$$\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$$

• STEP 3: Set the two vectors parallel to each other

•
$$\mathbf{d} = k \overrightarrow{AB}$$

• STEP 4: Set up and solve a system of linear equations in the three unknowns, $k,\,\lambda$ and μ



Find the vector product of the direction vectors.

$$\begin{pmatrix} 2\\-3\\4 \end{pmatrix} \times \begin{pmatrix} -1\\2\\1 \end{pmatrix} = \begin{pmatrix} (-3)(1) - (4)(2)\\(4)(-1) - (2)(1)\\(2)(2) - (-3)(-1) \end{pmatrix} = \begin{pmatrix} -11\\-6\\1 \end{pmatrix}$$

Find the vector in the direction of the line between the general coordinates.

$$\overrightarrow{AB} = \begin{pmatrix} -5 - \mu \\ 4 + 2\mu \\ -8 + \mu \end{pmatrix} - \begin{pmatrix} 6 + 2\lambda \\ -4 - 3\lambda \\ 3 + 4\lambda \end{pmatrix} = \begin{pmatrix} -1|| - \mu - 2\lambda \\ 8 + 2\mu + 3\lambda \\ -1|| + \mu - 4\lambda \end{pmatrix}$$

A point on L_2 A point on L_1

$$\begin{pmatrix} -1|| - \mu - 2\lambda \\ 8 + 2\mu + 3\lambda \\ -1|| + \mu - 4\lambda \end{pmatrix} = \begin{pmatrix} k \\ -6 \\ 1 \end{pmatrix}$$

So $\overrightarrow{AB} = k \begin{pmatrix} -1l \\ -6 \\ 1 \end{pmatrix}$

So $\overrightarrow{AB} = k \begin{pmatrix} -1l \\ -6 \\ 1 \end{pmatrix}$

Solve using $\overrightarrow{AB} = k \begin{pmatrix} -1l \\ -6 \\ 1 \end{pmatrix}$

Solve using $\overrightarrow{AB} = k \begin{pmatrix} -1l \\ -6 \\ 1 \end{pmatrix}$

Solve using $\overrightarrow{AB} = k \begin{pmatrix} -1l \\ -6 \\ 1 \end{pmatrix}$

Solve using $\overrightarrow{AB} = k \begin{pmatrix} -1l \\ -6 \\ 1 \end{pmatrix}$

Solve using $\overrightarrow{AB} = k \begin{pmatrix} -1l \\ -6 \\ 1 \end{pmatrix}$

Solve using $\overrightarrow{AB} = k \begin{pmatrix} -1l \\ -6 \\ 1 \end{pmatrix}$

Solve using $\overrightarrow{AB} = k \begin{pmatrix} -1l \\ -6 \\ 1 \end{pmatrix}$

Solve using $\overrightarrow{AB} = k \begin{pmatrix} -1l \\ -6 \\ 1 \end{pmatrix}$

Solve using $\overrightarrow{AB} = k \begin{pmatrix} -1l \\ -6 \\ 1 \end{pmatrix}$

Solve using $\overrightarrow{AB} = k \begin{pmatrix} -1l \\ -6 \\ 1 \end{pmatrix}$

Solve using $\overrightarrow{AB} = k \begin{pmatrix} -1l \\ -6 \\ 1 \end{pmatrix}$

Solve using $\overrightarrow{AB} = k \begin{pmatrix} -1l \\ -6 \\ 1 \end{pmatrix}$

Solve using $\overrightarrow{AB} = -\frac{238}{79}$ $\mu = -\frac{52}{79}$

 $\mu - 4\lambda - k = 11$

Substitute back into the expression for \overrightarrow{AB} and find the magnitude:

 $|\overrightarrow{AB}| = \begin{pmatrix} -1l - (-\frac{52}{79}) - 2(-\frac{238}{79}) \\ -1l + (-\frac{52}{79}) - 4(-\frac{238}{79}) \\ -1l + (-\frac{52}{79}) - 4(-\frac{238}{79}) \end{pmatrix} = \begin{pmatrix} (-\frac{341}{79})^2 + (-\frac{186}{79})^2 + (-\frac{31}{79})^2 + (-\frac$

Shortest distance = 4.93 units (3s.f.)