

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

3.8 Vector Equations of Lines

IB Maths - Revision Notes

3.8.1 Vector Equations of Lines

Equation of a Line in Vector Form

How do I find the vector equation of a line?

- The formula for finding the **vector equation** of a line is
 - $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$
 - Where r is the position vector of any point on the line
 - *a* is the **position vector** of a known point on the line
 - bis a direction (displacement) vector
 - λ is a scalar
 - This is given in the formula booklet
 - This equation can be used for vectors in both 2- and 3- dimensions
- This formula is similar to a regular equation of a straight line in the form Y = mX + c but with a vector to show both a point on the line and the direction (or gradient) of the line
 - In 2D the gradient can be found from the direction vector
 - In 3D a numerical value for the direction cannot be found, it is given as a vector
- As a could be the position vector of any point on the line and b could be any scalar multiple of the direction vector there are infinite vector equations for a single line
- Given any two points on a line with position vectors **a** and **b** the **displacement** vector can be written as **b** - **a**
 - So the formula $\mathbf{r} = \mathbf{a} + \lambda (\mathbf{b} \mathbf{a})$ can be used to find the vector equation of the line
 - This is not given in the formula booklet

How do I determine whether a point lies on a line?

 \odot 2024 Given the equation of a line r =

$$\begin{pmatrix} \boldsymbol{a}_1 \\ \boldsymbol{a}_2 \\ \boldsymbol{a}_3 \end{pmatrix} + \lambda \begin{pmatrix} \boldsymbol{b}_1 \\ \boldsymbol{b}_2 \\ \boldsymbol{b}_3 \end{pmatrix} t$$

the point **c** with position vector $\begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \end{pmatrix}$ is

on the line if there exists a value of λ such that

$$\begin{pmatrix} \boldsymbol{c}_1 \\ \boldsymbol{c}_2 \\ \boldsymbol{c}_3 \end{pmatrix} = \begin{pmatrix} \boldsymbol{a}_1 \\ \boldsymbol{a}_2 \\ \boldsymbol{a}_3 \end{pmatrix} + \lambda \begin{pmatrix} \boldsymbol{b}_1 \\ \boldsymbol{b}_2 \\ \boldsymbol{b}_3 \end{pmatrix}$$

• This means that there exists a single value of λ that satisfies the three equations:

•
$$c_1 = a_1 + \lambda b_1$$

- $c_2 = a_2 + \lambda b_2$
- $c_3 = a_3 + \lambda b_3$
- A GDC can be used to solve this system of linear equations for
 - The point only lies on the line if a single value of λ exists for all three equations
- Solve one of the equations first to find a value of λ that satisfies the first equation and then check that this value also satisfies the other two equations
- If the value of λ does not satisfy all three equations, then the point c does not lie on the line

😧 Exam Tip

- Remember that the vector equation of a line can take many different forms
 - This means that the answer you derive might look different from the answer in a mark scheme
- You can choose whether to write your vector equations of lines using unit vectors or as column vectors
 - Use the form that you prefer, however column vectors is generally easier to work with

Exam Papers Practice

© 2024 Exam Papers Practice

Equation of a Line in Parametric Form

How do I find the vector equation of a line in parametric form?

• By considering the three separate components of a vector in the *x*, *y* and *z* directions it is possible to write the **vector equation** of a line as **three separate equations**

Angle Between Two Lines

How do we find the angle between two lines?

- The angle between two lines is equal to the angle between their direction vectors
 It can be found using the scalar product of their direction vectors
- Given two lines in the form $\boldsymbol{r} = \boldsymbol{a}_1 + \lambda \boldsymbol{b}_1$ and $\boldsymbol{r} = \boldsymbol{a}_2 + \lambda \boldsymbol{b}_2$ use the formula

$$\boldsymbol{\theta} = \cos^{-1} \left(\frac{\boldsymbol{b}_1 \cdot \boldsymbol{b}_2}{|\boldsymbol{b}_1|| |\boldsymbol{b}_2|} \right)$$

- If you are given the equations of the lines in a different form or two points on a line you will need to find their direction vectors first
- To find the angle ABC the vectors BA and BC would be used, both starting from the point B
- The intersection of two lines will always create **two angles**, an acute one and an obtuse one
 - A positive scalar product will result in the acute angle and a negative scalar product will result in the obtuse angle
 - Using the absolute value of the scalar product will always result in the acute angle

😧 Exam Tip

- In your exam read the question carefully to see if you need to find the acute or obtuse angle
 - When revising, get into the practice of double checking at the end of a question whether your angle is acute or obtuse and whether this fits the question

Worked example

Find the acute angle, in radians between the two lines defined by the equations:

$$I_1: \mathbf{a} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-4\\-3 \end{pmatrix} \text{ and } I_2: \mathbf{b} = \begin{pmatrix} 1\\-4\\3 \end{pmatrix} + \mu \begin{pmatrix} -3\\2\\5 \end{pmatrix} \text{ Practice}$$

© 2024 Exam Papers Practice

STEP 1: Find the scalar product of the direction vectors:

$$\begin{pmatrix} 1 \\ -4 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 2 \\ 5 \end{pmatrix} = (1x-3) + (-4x2) + (-3x5) = -3 + (-8) + (-15) = -26$$
negative, so the angle will be the obtuse angle.
STEP 2: Find the magnitudes of the direction vectors:

$$\sqrt{(1)^{2} + (-4)^{2} + (-3)^{2}} = \sqrt{26}$$

$$\sqrt{(-3)^{2} + (2)^{2} + (5)^{2}} = \sqrt{38}$$

STEP 3: Find the angle: $\cos \Theta = \frac{|-26|}{\sqrt{26}\sqrt{38}}$ Using the absolute value will result in the acute angle

$$\theta = \cos^{-1}\left(\frac{26}{\sqrt{26}\sqrt{38}}\right)$$

$$\theta = 0.597$$
 radians (3sf)

Page 5 of 10 For more help visit our website www.exampaperspractice.co.uk

3.8.2 Shortest Distances with Lines

Shortest Distance Between a Point and a Line

How do I find the shortest distance from a point to a line?

- The shortest distance from any point to a line will always be the perpendicular distance
 - Given a line / with equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ and a point *P* not on /
 - The scalar product of the direction vector, b, and the vector in the direction of the shortest distance will be zero
- The shortest distance can be found using the following steps:
 - STEP 1: Let the vector equation of the line be r and the point not on the line be P, then the point on the line closest to P will be the point F
 - The point F is sometimes called the foot of the perpendicular
 - STEP 2: Sketch a diagram showing the line / and the points P and F
 - The vector FP will be perpendicular to the line /
 - STEP 3: Use the equation of the line to find the position vector of the point F in terms of λ
 - STEP 4: Use this to find the displacement vector FP in terms of λ
 - STEP 5: The scalar product of the direction vector of the line /and the displacement vector

 \bar{FP} will be zero

- Form an equation $\overrightarrow{FP} \cdot \mathbf{b} = 0$ and solve to find λ
- STEP 6: Substitute λ into \overrightarrow{FP} and find the magnitude \overrightarrow{FP}
 - The shortest distance from the point to the line will be the magnitude of $F\!P$
- Note that the shortest distance between the point and the line is sometimes referred to as the length of the perpendicular

How do we use the vector product to find the shortest distance from a point to a line?

- The vector product can be used to find the shortest distance from any point to a line on a 2dimensional plane
- Given a point, P, and a line $r = a + \lambda b$

The shortest distance from P to the line will be -

$$\left| \overrightarrow{AP} \times b \right|$$

- Where A is a point on the line
- This is **not** given in the formula booklet

💽 Exam Tip

• Column vectors can be easier and clearer to work with when dealing with scalar products.

Shortest Distance Between Two Lines

How do we find the shortest distance between two parallel lines?

- Two parallel lines will never intersect
- The shortest distance between two parallel lines will be the perpendicular distance between them
- Given a line I_1 with equation $\mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{d}_1$ and a line I_2 with equation $\mathbf{r} = \mathbf{a}_2 + \mu \mathbf{d}_2$ then the shortest distance between them can be found using the following steps:
 - STEP 1: Find the vector between \mathbf{a}_1 and a general coordinate from I_2 in terms of μ
 - STEP 2: Set the scalar product of the vector found in STEP 1 and the direction vector d₁ equal to zero
 - Remember the direction vectors d₁ and d₂ are scalar multiples of each other and so either can be used here
 - STEP 3: Form and solve an equation to find the value of μ
 - STEP 4: Substitute the value of μ back into the equation for I_2 to find the coordinate on I_2 closest to I_1
 - STEP 5: Find the distance between **a**₁ and the coordinate found in STEP 4
- Alternatively, the formula $\frac{|\vec{AB} \times \mathbf{d}|}{|\mathbf{d}|}$ can be used
 - Where AB is the vector connecting the two given coordinates \mathbf{a}_1 and \mathbf{a}_2
 - **d** is the simplified vector in the direction of \mathbf{d}_1 and \mathbf{d}_2
 - This is not given in the formula booklet

Cop**How do we find the shortest distance from a given point on a line to another line?**

- © 2024 Exam Papers Practice
 - The shortest distance from any point on a line to another line will be the perpendicular distance from the point to the line
 - If the angle between the two lines is known or can be found then right-angled trigonometry can be used to find the perpendicular distance
 - The formula $\frac{|AB \times \mathbf{d}|}{|\mathbf{d}|}$ given above is derived using this method and can be used
 - Alternatively, the equation of the line can be used to find a general coordinate and the steps above can be followed to find the shortest distance

How do we find the shortest distance between two skew lines?

- Two **skew** lines are not parallel but will never intersect
- The shortest distance between two **skew lines** will be perpendicular to **both** of the lines

- This will be at the point where the two lines pass each other with the perpendicular distance where the point of intersection would be
- The **vector product** of the two direction vectors can be used to find a vector in the direction of the shortest distance
- The shortest distance will be a vector **parallel** to the vector product
- To find the shortest distance between two skew lines with equations $\mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{d}_1$ and

$\mathbf{r} = \mathbf{a}_2 + \mu \mathbf{d}_2,$

• STEP 1: Find the vector product of the direction vectors \mathbf{d}_1 and \mathbf{d}_2

 $\bullet \mathbf{d} = \mathbf{d}_1 \times \mathbf{d}_2$

• STEP 2: Find the vector in the direction of the line between the two general points on I_1 and I_2 in terms of λ and μ

 $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$

• STEP 3: Set the two vectors parallel to each other

d =
$$k\overrightarrow{AB}$$

• STEP 4: Set up and solve a system of linear equations in the three unknowns, k, λ and μ

💽 Exam Tip

- Exam questions will often ask for the shortest, or minimum, distance within vector questions
- If you're unsure start by sketching a quick diagram
- Sometimes calculus can be used, however vector methods are usually required

Worked example Papers Practice

© 2024 A drone travels in a straight line and at a constant speed. It moves from an initial point (-5, 4, -8) in

the direction of the vector $\begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$. At the same time as the drone begins moving a bird takes off

from initial point (6, -4, 3) and moves in a straight line at a constant speed in the direction of the

vector
$$\begin{pmatrix} 2\\ -3\\ 4 \end{pmatrix}$$

Find the minimum distance between the bird and the drone during this movement.

Find the vector product of the direction vectors.

$$\begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} \times \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} (-3)(1) - (4)(2) \\ (4)(-1) - (2)(1) \\ (2)(2) - (-3)(-1) \end{pmatrix} = \begin{pmatrix} -11 \\ -6 \\ 1 \end{pmatrix}$$

Find the vector in the direction of the line between the general coordinates.

$$\overrightarrow{AB} = \begin{pmatrix} -5 - \mu \\ 4 + 2\mu \\ -8 + \mu \end{pmatrix} - \begin{pmatrix} 6 + 2\lambda \\ -4 - 3\lambda \\ 3 + 4\lambda \end{pmatrix} = \begin{pmatrix} -11 - \mu - 2\lambda \\ 8 + 2\mu + 3\lambda \\ -11 + \mu - 4\lambda \end{pmatrix}$$

$$A \text{ point on } l_2 \quad A \text{ point on } l_1$$

$$\begin{pmatrix} -11 - \mu - 2\lambda \\ 8 + 2\mu + 3\lambda \\ -11 + \mu - 4\lambda \end{pmatrix} = k \begin{pmatrix} -11 \\ -6 \\ 1 \end{pmatrix} \quad \overrightarrow{AB} \text{ is parallel to } \begin{pmatrix} -11 \\ -6 \\ 1 \end{pmatrix}$$

$$Set \quad up \text{ and solve a system of equations.}$$

$$I|k - 2\lambda - \mu = II$$

$$6k + 3\lambda + 2\mu = -8$$

$$\mu - 4\lambda - k = It$$

$$Solve \quad using \quad CDC:$$

$$k = \frac{31}{79} \quad \lambda = -\frac{238}{79} \quad \mu = -\frac{52}{79}$$

© 2024 Exam Substitute to back into the expression for AB and find the magnitude:

.

$$|\vec{AB}| = \left| \begin{pmatrix} -11 - \left(-\frac{52}{79}\right) - 2\left(-\frac{238}{79}\right) \\ 8 + 2\left(-\frac{52}{79}\right) + 3\left(-\frac{238}{79}\right) \\ -11 + \left(-\frac{52}{79}\right) - 4\left(-\frac{238}{79}\right) \end{pmatrix} \right| = \left| \begin{pmatrix} -\frac{341}{79} \\ -\frac{186}{79} \\ \frac{31}{79} \end{pmatrix} \right| = \sqrt{\left(-\frac{341}{79}\right)^2 + \left(\frac{186}{79}\right)^2 + \left(\frac{31}{79}\right)^2 + \left(\frac{31}{$$