

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

# **3.8 Further Trigonometry**

# **IB Maths - Revision Notes**

# AA HL



# 3.8.1 Trigonometric Proof

## **Trigonometric Proof**

#### How do I prove new trigonometric identities?

- You can use trigonometric identities you already know to prove new identities
- Make sure you know how to find all of the trigidentities in the formula booklet
  - The identity fortan, simple Pythagorean identity and the double angle identities for in and cos are in the SL section

$$-\tan\theta = \frac{\sin\theta}{\cos\theta}$$

- $-\cos^2\theta + \sin^2\theta = 1$
- $\sin 2\theta = 2\sin\theta\cos\theta$

$$\cos^2\theta = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$$

• The reciprocal trigonometric identities for sec and cosec, further Pythagorean identities, compound angle identities and the double angle formula for tan

Practice

• 
$$\sec\theta = \frac{1}{\cos\theta}$$

• cosec 
$$\theta = \frac{1}{\sin \theta}$$

• 
$$1 + \tan^2 \theta = \sec^2 \theta$$

• 
$$1 + \cot^2 \theta = \csc^2 \theta$$

•  $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$ 

<sup>Copyright</sup> •  $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$ 

• 
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
  
 $2\tan\theta$ 

$$\tan 2\theta = \frac{1}{1 - \tan^2 \theta}$$

• The identity for cot is **not in the formula booklet**, you will need to remember it

$$-\cot\theta = \frac{1}{\tan\theta} = \frac{\cos\theta}{\sin\theta}$$

- To prove an identity start on one side and proceed step by step until you get to the other side
  - It is more common to start on the left hand side but you can start a proof from either end
  - Occasionally it is easier to show that one side subtracted from the other is zero
  - You should not work on both sides simultaneously



#### What should llook out for when proving new trigonometric identities?

- Look for anything that could be a part of one of the above identities on either side
  - For example if you see  $\sin 2\theta$  you can replace it with  $2\sin\theta\cos\theta$
  - If you see  $2\sin\theta\cos\theta$  you can replace it with  $\sin 2\theta$
- Look for ways of reducing the number of different trigonometric functions there are within the identity
  - For example if the identity contains tan θ, cot θ and cosec θ you could try
    - using the identities  $\tan \theta = 1/\cot \theta$  and  $1 + \cot^2 \theta = \csc^2 \theta$  to write it all in terms of  $\cot \theta$
    - or rewriting it all in terms of sin  $\theta$  and cos  $\theta$  and simplifying
- Often you may need to trial a few different methods before finding the correct one
- Clever substitution into the **compound angle formulae** can be a useful tool for proving identities
  - For example rewriting  $\cos \frac{\theta}{2} \operatorname{as} \cos \left(\theta \frac{\theta}{2}\right) \operatorname{doesn't change the ratio but could make an$

identity easier to prove

- You will most likely need to be able to work with fractions and fractions -within-fractions
- Always keep an eye on the 'target' expression this can help suggest what identities to use

#### 💽 Exam Tip

- Don't forget that you can start a proof from either end sometimes it might be easier to start from the left-hand side and sometimes it may be easier to start from the right-hand side
- Make sure you use the formula booklet as all of the relevant trigonometric identities are given to you
- Look out for special angles (0°, 90°, etc) as you may be able to quickly simplify or cancel
- parts of an expression (e.g.  $\cos 90^\circ = 0$ )

Copyright © 2024 Exam Papers Practice





© 2024 Exam Papers Practice



# 3.8.2 Strategy for Trigonometric Equations

### Strategy for Trigonometric Equations

#### How do lapproach solving trig equations?

- You can solve trig equations in a variety of different ways
  - Sketching a graph
    - If you have your GDC it is always worth sketching the graph and using this to analyse its features
  - Using trigonometric identities, Pythagorean identities, the compound or double angle identities
    - Almost all of these are in the formula booklet, make sure you have it open at the right page
  - Using the unit circle
  - Factorising quadratic trig equations
    - Look out for quadratics such as  $5\tan^2 x 3\tan x 4 = 0$
- The final rearranged equation you solve will involve sin, cos or tan
  - Don't try to solve an equation with **cosec**, **sec**, or **cot** directly

#### What should llook for when solving trig equations?

- Check the value of x or  $\theta$ 
  - If it is just x or θ you can begin solving
  - If there are different multiples of x or θ you will need to use the double angle formulae to get everything in terms of the same multiple of x or θ
  - If it is a function of x or θ, e.g. 2x 15, you will need to transform the range first
    - You must remember to transform your solutions back again at the end
- Does it involve more than one trigonometric function?
- Copyright If it does, try to rearrange everything to bring it to one side, you may need to factorise
- © 2024 Eval If not, can you use an identity to reduce the number of different trigonometric functions?
  - You should be able to use identities to reduce everything to just one simple trig function (either sin, cos or tan)
  - Is it linear or quadratic?
    - If it is linear you should be able to rearrange and solve it
    - If it is quadratic you may need to factorise first
      - You will most likely get two solutions, consider whether they both **exist**
      - Remember solutions to sin x = k and cos x = k only exist for -1 ≤ k ≤ 1 whereas solutions to tan x = k exist for all values of k
  - Are my solutions within the given range and do I need to find more solutions?
    - Be extra careful if your solutions are negative but the given range is positive only
    - Use a sketch of the graph or the unit circle to find the other solutions within the range
  - If you have a function of x or θ make sure you are finding the solutions within the transformed range
    - Don't forget to transform the solutions back so that they are in the required range at the end









## 😧 Exam Tip

- Try to use identities and formulas to reduce the equation into its simplest terms.
- Don't forget to check the function range and ensure you have included all possible solutions.
- If the question involves a function of x or θ ensure you transform the range first (and ensure you transform your solutions back again at the end!).





Find the solutions of the equation  $(1 + \cot^2 2\theta)(5\cos^2 \theta - 1) = \cot^2 2\theta$  in the interval  $0 \le \theta \le 2\pi$ .

