铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

3.8 Further Trigonometry

3.8.1 Trigonometric Proof

Trigonometric Proof

How dolprovenew trigonometric identities?

- You can use trigonometric identities you alreadyknow to prove new identities
- Make sure you know how to find all of the trig identities in the formula booklet
- The identityfortan, simple Pythago rean id entity and the double angle identities for in and cos are in the SLsection
- $\tan \theta=\frac{\sin \theta}{\cos \theta}$
- $\cos ^{2} \theta+\sin ^{2} \theta=1$
- $\sin 2 \theta=2 \sin \theta \cos \theta$
- $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta$
- The reciprocal trigo nometric identities forsec and cosec, further Pythagorean identities, compound angle identities and the double angle formula fortan
- $\sec \theta=\frac{1}{\cos \theta}$
- $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$

- $1+\tan ^{2} \theta=\sec ^{2} \theta$
- $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$
- $\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
- $\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
- $\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
- $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
- The identity forcot is not in the formula booklet, you will need to remember it
- $\cot \theta=\frac{1}{\tan \theta}=\frac{\cos \theta}{\sin \theta}$
- To prove an identity start on one side and proceed step by step untilyou get to the other side
- It is more common to start on the left hand side but you can start a proof from either end
- Occasionallyit is easier to show that one side subtracted from the other is zero
- Youshould not work onboth sides simultaneously

What should Ilook out for when proving new trigonometric identities?

- Look for anything that could be a part of one of the above identities on either side
- Forexample if you see $\sin 2 \theta$ you can replace it with $2 \sin \theta \cos \theta$
- If you see $2 \sin \theta \cos \theta$ you can replace it with $\sin 2 \theta$
- Lookforways of reducing the number of different trigo no metric functions there are within the identity
- For example if the identity contains $\tan \theta, \cot \theta$ and $\operatorname{cosec} \theta$ you could try
- using the id entities $\tan \theta=1 / \cot \theta$ and $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$ to write it all in terms of $\cot \theta$
- or rewriting it all in terms of $\sin \theta$ and $\cos \theta$ and $\operatorname{simplifying~}$
- Often you mayneed to trial a few different methods before finding the correct one
- Cleversubstitution into the compound angle formulae can be a useful to ol for proving identities
- For example rewriting $\cos \frac{\theta}{2}$ as $\cos \left(\theta-\frac{\theta}{2}\right)$ doesn't change the ratio but could make an identity easier to prove
- You will most likely need to be able to work with fractions and fractions-within-fractions
- Always keep an eye on the 'target' expression - this canhelp suggest what identities to use

(9) Exam Tip

- Don't forget that you can start a proof from either end - sometimes it might be easierto start from the left-hand side and sometimes it may be easier to start from the right-hand side
- Make sure you use the formula booklet as all of the relevant trigonometric identities are given to you
- Look out forspecial angles $\left(0^{\circ}, 90^{\circ}\right.$, etc) as you may be able to quickly simplify or cancel parts of an expression (e.g. $\cos 90^{\circ}=0$)

Worked example

Prove that $8 \cos ^{4} \theta-8 \cos ^{2} \theta+1=\cos 4 \theta$.

$$
\begin{aligned}
& \text { It is easiest to start on the right-hand side and } \\
& \text { apply the double angle formula for } \cos 2 \theta . \\
& \qquad 8 \cos ^{4} \theta-8 \cos ^{2} \theta+1=\cos 4 \theta
\end{aligned}
$$

The form of the left-hand side suggests that the identity $\cos 2 A=2 \cos ^{2} A-1$ would be more useful than the other options.

$$
\cos 4 \theta=2 \cos ^{2} 2 \theta-1
$$

$$
=2\left(2 \cos ^{2} \theta-1\right)^{2}-1
$$

$$
=2\left(4 \cos ^{4} \theta-4 \cos ^{2} \theta+1\right)-1
$$

$$
=8 \cos ^{4} \theta-8 \cos ^{2} \theta+2-1
$$

$$
\therefore \cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1
$$

3.8.2 Strategy for Trigonome tric Equations

Strategy for Trigonometric Equations

How do lapproach solving trig equations?

- Youcan solve trig equations in a variety of different ways
- Sketching a graph
- If you have your GDC it is always worth sketching the graph and using this to analyse its features
- Using trigonometric identities, Pythagorean identities, the compound ordouble angle identities
- Almost all of these are in the formula booklet, make sure you have it o pen at the right page
- Using the unit circle
- Factorising quadratic trig equations
- Look out for quadratics such as $5 \tan ^{2} x-3 \tan x-4=0$
- The final rearranged equation you solve will involve sin, cos ortan
- Don't tryto solve an equation with cosec, sec, orcot directly

What should I look for when solving trig equations?

- Check the value of x or θ
- If it is just x or θ you can begin solving
- If there are different multiples of x or θ you will need to use the double angle formulae to get everything in terms of the same multiple of $x \operatorname{or} \theta$
- If it is a function of x or θ, e.g. $2 x-15$, you will need to transform the range first
- You must remember to transformyour solutions back again at the end
- Does it involve more than one trigonometric function?
- If it does, try to rearrange everything to bring it to one side, you may need to factorise
- If not,canyou use an identity to reduce the number of different trigonometric functions?
- You should be able to use id entities to reduce everything to just one simple trig function (eithersin, cos ortan)
- Is it linear or quadratic?
- If it is linear you should be able to rearrange and solve it
- If it is quadratic you mayneed to factorise first
- You will most likelyget two solutions, consider whether theybothexist
- Remember solutions to $\sin x=k$ and $\cos x=k$ only exist for $-1 \leq k \leq 1$ whereas solutions to $\tan x=k$ exist for all values of k
- Are mysolutions within the given range and do Ineed to find more solutions?
- Be extra careful if your solutions are negative but the given range is positive only
- Use a sketch of the graph or the unit circle to find the other solutions within the range
- If you have a function of x or θ make sure you are finding the solutions within the transformed range
- Don't forget to transform the solutions back so that they are in the required range at the end

Exam Papers Practice

(9) Exam Tip

- Try to use identities and formulas to reduce the equation into its simplest terms.
- Don't forget to check the function range and ensure you have included all possible solutions.
- If the question involves a function of xor θ ensure you transform the range first (and ensure you transform your solutions back again at the end!).

Worked example

Find the solutions of the equation $\left(1+\cot ^{2} 2 \theta\right)\left(5 \cos ^{2} \theta-1\right)=\cot ^{2} 2 \theta$ in the interval $0 \leq \theta \leq 2 \pi$.

$$
\begin{aligned}
& \text { Move equivalent trig functions to the same sides: } \\
& \qquad \begin{array}{r}
5 \cos ^{2} \theta-1=\frac{\cot ^{2} 2 \theta}{1+\cot ^{2} 2 \theta} \quad \begin{array}{l}
\text { divide both sides by } \\
1+\cot ^{2} 2 \theta
\end{array} \\
\begin{array}{r}
\cos 2 \theta=2 \cos ^{2} \theta-1
\end{array} \\
\therefore \cos ^{2} \theta=\frac{1}{2} \cos 2 \theta+\frac{1}{2} \\
5\left(\frac{1}{2} \cos 2 \theta+\frac{1}{2}\right)-1
\end{array} \quad=\frac{\cot ^{2} \theta=\operatorname{cosec}^{2} 2 \theta}{\operatorname{cosec}^{2} 2 \theta} \\
& \frac{5}{2} \cos 2 \theta+\frac{3}{2}=\frac{\frac{\cos ^{2} 2 \theta}{\sin ^{2} 2 \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}}{\sin ^{2} 2 \theta} \quad \operatorname{cosec} \theta=\frac{1}{\sin \theta} \\
& 2(5 \cos 2 \theta+3)=\frac{\cos ^{2} 2 \theta}{2 \theta-5 \cos 2 \theta-3}=0 \quad \text { Rearrange to form a } \\
& (2 \cos 2 \theta+1)(\cos 2 \theta-3)=0 \\
& \cos 2 \theta=-\frac{1}{2} \text { or } \cos 2 \theta=3
\end{aligned}
$$

We are solving the equation for 2θ so we must transform the range first: $0 \leqslant 2 \theta \leqslant 4 \pi$

$$
2 \theta=\cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3} \quad \text { (primary value) }
$$

$$
\text { so } 2 \theta=\frac{2 \pi}{3}, 2 \pi-\frac{2 \pi}{3}=\frac{4 \pi}{3}, \frac{2 \pi}{3}+2 \pi=\frac{8 \pi}{3}, \frac{4 \pi}{3}+2 \pi=\frac{10 \pi}{3}
$$

$$
\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}
$$

