Mark schemes

(a) (i) Method of positioning quadrats,
E.g. Find direction and distance from specified point / find coordinates on a grid / split area into squares;

Method of generating random numbers;
E.g. From calculator / telephone directory / numbers drawn from a hat;

Last point represents minimum answer
Q Do not credit any method that relies on throwing a quadrat
(ii) Calculate running mean / description of running mean;

When enough quadrats, this shows little change / levels out (if plotted as a graph);

Enough to carry out a statistical test;
A large number to make sure results are reliable;
Ignore terms that are not incorrect
Regards large numbers as 10 / 10\% +
Need to make sure work can be carried out in the time available;
2 max
(b) Coppice different parts of the wood at different times;

As data show many daffodils flowering 4 / 5 years after coppicing;
Q Second point needs specific reference to the graph, numbers and time after coppicing. Accept any correct answer that does this.
(c) Positive correlation between rainfall and flowering / the higher the rainfall, the more daffodil flowers;

Negative correlation / the higher the temperature the fewer daffodils in flower;
All statistically significant so not likely to be / not due to chance;
[8] (a) Vegetation consists mainly of low growing species / herbs / annuals / no / few trees;

Species \mathbf{X} has high rate of photosynthesis at high light intensity; Do not credit Species \boldsymbol{X} is first tree

Species \mathbf{X} grow fastest at high rate of photosynthesis / at high light intensities and will outcompete other species Y/Z;
(b) Produces shade / reduces light intensity;

Species Z grows best / photosynthesis best / in low light intensity /
Species \mathbf{Z} does not grow well / low rate of photosynthesis in high light intensity;
Accept answers in terms of CO_{2} absorption
] (a) (i) Will work in all weather conditions / hairs will stick to it even if shrew / animal is wet /
3 withstand rain;
(ii) So shrews come into contact with glue;
(b) Avoids bias / allows statistical tests to be carried out;

Allow description
(c) (i) Increases the reliability of the measurements;

If measurements are repeatable, differences less likely to be due to measurement / personal error / anomalies unlikely;

Accept advantages of repeatable results. E.g. identifying anomalies / remove errors
(ii) Plot graph / scatter diagram of one set of results against the other;

Q To gain first marking point, candidates must say what has been plotted.

Expect to see points lying close to line / Line should slope upwards / show positive correlation;

If what is being plotted is not clear, second point cannot be awarded.

OR
Plot measurement against hair number;
Look for overlying / corresponding points;
(d) (i) One mark for a valid explanation based on individual shrews entering morethan one hair tube / many hairs from same shrew / shrews enter without leaving hair;
(ii) Rules out differences due to changes in population / changes in environmentalconditions;

That could be produced by births / deaths / migration / specific example of environmental conditions affects results;
(e) (A statistical test) determines the probability of results being due to chance;

Enables null hypothesis / description of null hypothesis to be accepted / rejected / determines whether correlation / result is significant;
(f) (i) (Curve / line of best fit shows) positive correlation / description of positivecorrelation;
(ii) Curve / line of best fit (almost) parallel to x-axis / horizontal / level / nocorrelation / index is independent of number of shrews;

Hair tubes with positive results when no shrews trapped;
Small size of shrews means shrews may not trigger traps;
2 max
[15]
(a) (i) decomposers convert (nitrogen in organic compounds) into ammonia / ammonium;

4 suitable example of "organic nitrogen" - protein / urea / amino acid etc. (e.g. linked to process); nitrifying bacteria / correctly named convert ammonium to nitrate; via nitrite;
(ii) convert nitrogen (gas) into ammonium / ammonia / amino acids; add usable / available nitrogen to an ecosystem / eq.;
(b) (i) 1. numbers of dispersed bacteria increase as they feed on organic matter;
2. numbers of free-swimming protoctistans increase because number ofbacteria increase;
3. dispersed bacteria decrease as amount of dispersed organic matterdecreases / due to lack of food / as organic matter is converted to flocs / are preyed on by free-swimming protoctistans;
(ii) 1. (in a succession) organisms (enter an area and) change the environment /conditions creating new niches / habitats;
2. allows different species / different types of organisms to enter / besuccessful;
3. dispersed bacteria change dispersed organic matter to flocs;
4. presence of flocs allows crawling protoctistans to enter / to increase / tobe successful;
(a) (i) ecosystem is (self-supporting) system in which all organisms / community interact

5 with physical environment / community + environment / biotic + abiotic;
(ii) $\mathrm{A}+\mathrm{B}+\mathrm{E}+\mathrm{F}+\mathrm{G}+\mathrm{I}$;
(b) pygmy weed competes for CO_{2} / light / nutrients; reduction in numbers of original plants; some of original plant species lost; loss of habitats / niches / shelter / food sources; consumers die / some migrate;

3 max
[5] (a) Increase in number of species;

Increase in numbers of some species;
(b) Initial environment hostile / few organisms adapted;

These organisms change the environment / suitable example;
More niches / more habitats;
Allowing other organisms to become established;
max. 3
[5] (i) Population is the total number of organisms / individuals of a
7 species / tigers in an area (at a given time);
(a) (i) Selecting the nettle plant:

Random number table avoids bias in placing of quadrat;
'Nearest centre' avoids bias in choosing plant to measure;
1 mark for "method avoids bias"
(ii) Measuring the sixth leaf:

To allow valid comparison / so as not to introduce another variable;
Reduces / avoids influence of growth / age / light / shading;
(b) Definition of range $+\mathrm{SD} /$ effect of outliers on range +SD ;

Ranges are similar in both areas;
Suggests that variation within populations is similar;
SD smaller in area of high light intensity;
Shows that area of high light intensity is a more uniform population;
(c) $1.164 / 1.16 / 1.2$, however derived $=2$ marks
$0.83-0.86 / 1.1$, however derived $=1$ mark
Evidence of correct use of both sets of figures, but inappropriate answer = 1 mark
(a) collect a sample (of insects in each area) and mark unobtrusively / in a way not harmful to
insects; release and allow time to re-integrate with rest of population / eq.; collect second sample and count number marked; number in population estimated by:
$\frac{\mathrm{Sf} \times \mathrm{x} \quad \mathrm{S} 2}{\text { Number markedin } 2^{\text {mi }} \text { sample }} /$
$\frac{\text { Total marked }}{\text { Number markedin } 2^{n d} \text { sample }}=\frac{\text { Population }}{\text { second sample }}$;
(b) (i) 1 ;
(ii) $\quad(p=) 0.05 / 5 \%$; (ignore 95\%)
(iii) value for χ^{2} exceeds critical value / $125.8>10.8$;

Results unlikely to be due to chance / have a biological cause;
P<0.1\% / < 5\% ;
(c) (i) biomass respired / GPP - respiration = NPP; biomass lost as CO_{2};
(ii) more food for insects;
[11] (a) Fertilisers / detergents / slurry / manure / sewage / faeces;
(b) $(31-5) / 31 \times 100 \% /$ single error in otherwise correct method; 83.87 / 83.9 / 84\%;
(c) Have continuous data for phosphate but not for biomass;

Effect of named factor explained;
(d) 1. Increased phosphate causes increase in plant growth / algal bloom;
2. Plants (cover surface and) block out light so plants (under surface) die;
3. Increase in (aerobic) bacteria / decomposers (which break down plants);
4. Bacteria / decomposers use up oxygen / reduce oxygen conc. in water;5. In respiration;
6. Plants unable to photosynthesise so less oxygen produced;
max 6
[11] (a) Population - organisms of one species in an ecosystem / habitat / area;

Community - organisms of all species / all populations in an ecosystem / habitat / area;
(b) (i) No immigration / migration (Ignore references to emigration);

No reproduction (lgnore references to death);
Idea of mixing;
Marking does not influence behaviour / increase vulnerability to predation;
Sample / population large enough;
$\max 2$
(ii) $\frac{96 \times 77}{11}$
; 672;
Correct answer (however derived) scores 2 marks
Incorrect answer with evidence of correct method scores 1 mark.
(c) Principle of randomly placed quadrats and method of producing randomquadrats;
(Reject 'throwing')
Valid method of obtaining no. dandelions in given area (mean per quadrat / total no. in many quadrats);
Multiply to give estimate for total field area;
(d) (i) Niche of A-1;

Niche of B-3;
Too small for B / too hot for A - 4;
Too large for $A /$ too cold for $B-2$;
All four correct = 2 marks; any 2 correct = 1 mark
(ii) Original population living in one area / 2 species evolved in the area;
Idea of genetic variability;
Concept of reproductive isolation;
Possible mechanism;
Gene pools become increasingly different;
Until interbreeding does not produce fertile offspring;
$\max 4$
[15] (a) 1. Occurs in an unchanging environment;

12

$+$
2. Selection against extremes / selection for the mean / mean / median / modeunaltered
3. Range / S.D is reduced
4. Increasing proportion of populations becomes well adapted to environment;
(b) 1. All plants are acyanogenic below $-4^{\circ} \mathrm{C}$ and (most) cyanogenic above $+10^{\circ} \mathrm{C}$;
2. Cyanogenic plants' cells freeze below -4°;
3. Releasing cyanide (into their own tissues) / damaging / killing plants / disruptingmetabolism;
4. Selective advantage not to produce cyanide at $-4^{\circ} \mathrm{C}$;
5. Slugs present at higher temperatures / not usually present / inactive at lowertemperatures and cyanide production kills / deters slugs;
[10] (a) Tapes / string / axes laid out at right angles / grid area;

Method of obtaining random co-ordinates; Do not allow "Use random number generator"
(b) (i) Decrease then remain constant;

From 200 cm / over 150 cm ;
(ii) Oxygen decreasing because soil becomes more compacted / notreplaced; Decrease in oxygen leads to fewer aerobes surviving;
(c) Anaerobic bacteria replace aerobic as oxygen decreased by aerobic bacteria;

Remove competition;
Aerobic bacteria no longer able to survive in these conditions;
(d) (i) Near the surface / in top 50 cm ;

Table shows decrease with time at greater depths;
(ii) Decrease;

Fewer aerobic bacteria with depth;
Oxygen concentration decreases / less oxygen at depth;
(e) Probability greater than 95\% / 0.95;

Results are not due to chance / results are significant;
Because bars do not overlap;
(f) Plot as graph;

Draw line of best fit;
Read off appropriate value;
3
[20] (a) 14 year cycles;

2 predator / stoat peaks after prey / lemming;
3 lemmings increase due to low numbers of stoats / available food;
4 more food for stoats so numbers increase;
5 increased predation reduces number of lemmings;
6 number of stoats decreases due to lack of food / starvation;
(b) smaller populations have fewer different alleles / more homozygosity / lessheterozygosity / smaller gene pool / lower genetic variability; migrants bring in new alleles / increase gene pool;
(c) geographical isolation of populations;variation present in population(s); different environmental conditions / different selection pressures / different phenotypes selected; change in genetic constitution of populations / gene pools / allele frequency;
[12] (a) (i) change in community over time;
15

> either due to change environmental / abiotic factors / change is due to species present;
(ii) stable community / no further succession / final community;
(b) (increased) interspecific competition; for light / nutrients / named nutrient / water;
(c) fewer leaves / lower surface area / shading of leaves so less photosynthesis to producenew biomass / glucose / growth; competition with other species for nitrates / named nutrients so
reduced synthesis of protein or named compound; ratio of leaves to woody parts and roots decreases so higher respiration relative to photosynthesis;
[8] (a) species present change the habitat / named change;
other species able to colonise;
new species better competitors;
(b) D - as more species present;more complex food webs; or
change in one species will have little effect on others; as alternative food sources;

2 max
(c) sand drains easily / low water retention;(sunken stomata) reduce transpiration; as pocket pf saturated air trapped near stomatal pore; this reduces diffusion / water potential gradient;
(d) series of changes over a distance / gradient of environmentalfactor / named environmental factor / cline present / ensures sampling of each community;
[9] (a) use of random numbers to place quadrats;
number of individuals counted in large number of quadrats;
little variation random, large variation - clustered;
(b) less competition;
for water /
nutrients;
[5] (a) (i) true indication of growth / water mass may vary;
intraspecific;
(iii) the denser the planting the greater the yield;above a planting density of approx 30 competition for named resource / named limiting factor / population density not limiting;
(b) use genetically identical plants / clones / asexual reproduction / tissue culture; maintain identical environmental conditions / named condition; reference to density of planting;

2 max
] (a) (i) transect line may not go through representative areas / may avoid certain areas;

19

(ii) large sample; how random coordinates are generated / how random places chosen;

2
(b) (i) spread of values around the mean height of the plant;
(ii) smaller plants at higher altitude;greater the altitude the lower the standard deviation ; reference to figures to make a comparison;

2 max
(iii) the plants measured were grown under uniform conditions;
[7] (a) 1 shore crab rapidly colonises / rapid growth;

2 ability to live different environments / no natural predators / will have similar /overlapping niche with native species / valid example / shore crab may be carrier of disease;
3 shore crab better competitor / more aggressive;
4 decreased population of prey species;
5 ecosystem less stable;
(b) between A and B water potential of blood rises as water potential of blood rises aswater potential of surrounding water rises, after B rise in water potential less rapid / at C no further change occurs;
(c) No - as blood is isotonic with surrounding water / blood and surroundingwater have same water potential;
(d) (i) water potential of blood maintained;so (blood) cells not destroyed (by osmosis);

OR
replaces ions / salts lost diffusion;
ions / salts required for named metabolic process;
(ii) rate of respiration decreases; less ATP made; insufficient to maintain water potential of blood when in estuary; isotonic in sea so no need to transport salts;

OR
sea temperature higher than river; higher
metabolic rate / higher enzyme activity; advantage of this crab e.g. still able to escape from predators;

3 max
[12] (a) Gg / suitable equivalent;

Grey : black about 3: 1;
[Note: Can be in table / diagram]
(b) To determine the probability;
[Accept: Likelihood]
Of the results being due to chance;
[Accept: Coincidence]
(c) (i) both alleles will be expressed (in the phenotype);
(ii) $0.25 / 25 \%$; $=2$ marks
$C^{N}=250 / 1000 ;=1$ mark
(iii) $\quad P^{2}=(0.25)^{2} / 0.0625 /$ square of calculated figure for C^{N}; $=2$ marks $p^{2}+2 p q+$ $q^{2}=1.0 ;=1$ mark $=31.25 / 31$;
[Accept: Derived from either p^{2} or q^{2}]
3
[10] (a) populations of different species;
22
living in the same environment / habitat;
(often) named after dominant plant / example;
(one mark for principle:all the species living in the same place)
(b) more species / diversity (in the field);more niches / habitats;
more feeding opportunities (range of types available);
(c) one method named, e.g.: mark, release, recapture; sweep netting / kick sample; pitfall traps; light trap;

1 max
[6] (i) normal virus reduces area eaten by $40 \mathrm{~cm}^{2}$
genetically engineered reduces by $64 \mathrm{~cm}^{2}$
$64-40=24$
$\frac{24}{40} \times 100$
$=60 \%$ more effective
1 mark for principle of calculation;
60% more effective $=2$ marks; or
$\frac{64}{40}$
$=1.6$ times more effective
1 mark for principle of calculation;
1.6 times more effective = 2 marks;
(if only difference in area eaten given, 1 mark)
(ii) toxin kills the caterpillars faster than just the virus; so less time for leaves to be eaten / energy for eating;
(a) there is no difference between the number of lichens growing on the walls (facing different 24 directions);
(b) $36,36,36$;
(c) 2 ;
(d) p less than 0.05 so reject the null hypothesis;the difference is not due to chance / significant difference;
the direction the wall faces does have an effect on the population of lichens;
(e) algae photosynthesise / produce organic molecules / named;fungus anchors the lichen / absorbs water which is available to the algae / prevents dehydration of alga / absorbs mineral ions / phosphates / nitrates;
(a) 1. colonisation / pioneering;
2. microscopic plants at start;
3. death / decomposition;
4. named change in environment e.g. increase in organic matter / stabilisation;
5. new species colonise once there is a change;
6. increase in number of species / diversity / increase in total amount of livingmaterial / biomass / more niches / increase in nutrient availability / change from more extreme conditions / more stability;
(b) marking principles:
one mark - direct result of removing forest cover;
e.g. soil erosion / leaching one mark - specific
effect on organisms in lake;
e.g. more sediment / nutrients (for plants to grow)
(c) 1. named nutrient availability;
2. numbers of producers providing energy (for a food chain) / light intensity affecting the rate of photosynthesis;
3. disease killing (weaker) members of species / predation described;
4. space for nest building / niches;
5. competition for a named limited resource / (intra and interspecific)
competitionexplained;
(a) very long / deep roots, to reach water deep in the soil / nitrogen-fixing bacteria, to provide a 26 source of nitrogen for growth in poor soil;
interspecific;
(b) (mesquite) proteins / amino acids (ploughed) into soil / nodules ploughed in and
(decomposers) bacteria / fungi feed on these;
excrete ammonia;
nitrifying bacteria convert these to nitrites / nitrates; absorbed by roots of grasses and increase their growth; accept increases recycling of other ions / phosphate / potassium;
(c) control organism a parasite / predator;specific to pest; population varies with population of pest; controls size of pest population but does not kill all;
keeps pest population low enough to prevent significant (economic) damage;
3 max
[8]
With hormone (third column) cadmium produces large /
27
significant / 45% fall in enzyme production; without
hormone (second column) no significant effect on
enzyme production with cadmium;.
2 max
[2] (a) (i) (collect and) dry all above ground plant material;

28

(reject collect one / small sample / whole
plants) in an oven at or just below $100^{\circ} \mathrm{C}$;
weigh and repeat until constant mass; other precaution, e.g. cooling in desiccator;

3 max
(ii) large number of sample areas / repeats;randomly selected;
(iii) drying destroys plants, so different samples needed;large area, so difficult to get representative samples; difficult to measure biomass of trees; variability in growing conditions; variability of abiotic conditions in different areas of forest;

2 max
(b) (i) 1:25
(ii) most of the plants are trees / large with high proportion of dead / nonphotosynthesising biomass; herbs grow rapidly / small so large percentage increase / herbs have higher productivity, so ratio lower at 10 years;
[10] (a) (i) the non-living / physical part (of an ecosystem / environment);
29 \square
(ii) density-independent, with named abiotic factor and a specific effect;
(b) capture, count and release; carefully
mark to avoid detection; recapture, count marked and unmarked;
(information from an equation is valid)
peak and trough later than those of larvae / idea of time lag; (allow correct line drawn on the graph)
(ii) reduction in leaf area / size decreases photosynthesis;
less food reserves available for production of new
needles;
OR
feeding larvae damage more growing points;
takes time for tree to recover / less growing time for needles;
(a) pioneers / suitable example colonise land;
example of change in environment;
enables change in species;
conditions change further / example to favour trees;
(b) stable community / no further succession / final community;
(c) roots unable to respire (aerobically); active transport of minerals / other metabolic effect stops;
(d) action of bacteria / decomposers inhibited / fewer bacteria / decomposers;acid conditions inhibits enzymes / enzymes denatured / changes active site;
H^{+}ions affect active site; anaerobic conditions;

3 max
[10] (a) (i) tips colonised by short-lived plants / short lived plants are pioneers;
short-lived plants fast growing / spreading / distribute seeds quickly; short-lived plants change the environment e.g. make conditions more favourable for long-lived plants; valid reference to competition;
(ii) long-lived plants compete with each other; death of some long-lived plants; more niches / leaving spaces / areas for growth of short-lived plants; short-lived plants recolonise;
(b) control of named variable e.g. light, water-content, nutrients; large numbers of both species / 10+ individuals; range of different concentrations of zinc; valid measurement of growth, height / leaf area / root growth / numbers / mass / \% germination;
statistical analysis / correlation between the two sets of data;
OR
large number of samples taken (in the field);
principle of determining zinc concentration of soil;
valid measurement of growth, height / leaf area /
root growth / numbers / mass / \% germination;
statistical analysis / correlation between the two sets of data;
(reject: 9.76)
(b) isolation (on islands); variety of habitats / conditions different from origin / other islands; differing pathways of natural selection; leading to organisms too different to interbreed.

3 max
[4] (a) Competition described / named biotic factor (that they might compete for);

Reject ref. to predation or abiotic factors

(b) (i) Not many animals brought home during this period;

Overall, detached bring in most animals;
Mostly mammals, (fewer birds) and fewest frogs;
Idea of 'preference', not just restating data
Cats prefer mammals to birds / find mammals easier to catch;
Idea of 'preference'/'availability', not just restating data
Cats do not prefer frogs / have fewer frogs to catch;
Cats in flats take very few birds or frogs;
Suitable use of standard deviations;
2 max
(ii) Suggestion; with explanation;

Note that sample size is large - reject ref. to small / sample sizes.

Examples,

Method underestimates prey;
(Because) cats don't bring some prey home/eat it before seen;

Cats may kill other animals;
But don't bring them home/eat them;
Don't know how many cats in each type of housing;
So comparisons difficult;
Overlap of SDs (in some cases);
So no significant differences between means / named examples where this is so;
Don't know details of housing;
May have different amounts of prey / types of prey around;
Number of prey not large;
So, possible large variability in results;

$$
2 \max
$$

(c) (i) Wearing a bell reduces/affects/changes a cat's probability of catching prey;

Accept statements of - Null hypothesis that wearing a bell makes no difference to probability of catching prey

1
(ii) No (significant) difference for birds and frogs;
(Significant) fall in mammals caught;
Suitable ref. to standard deviations;
Reject mammals and birds fall
2 max
[8] (a) angle, moisture and pH
(all required)
(b) system for subdividing quadrat into, e.g. many squares;method of estimating cover in small squares, e.g. counting those where cover over 50%, or cover at points (of intersection);
(not just 'count squares with vegetation' unless very small)
(c) increasing vegetation cover is related to increasing moisture content (allow 'affects' moisture content or vice versa, not 'causes);
correlation is significant / not due to chance / can reject null hypothesis / only 1 in 20 / 5\% probability that the correlation is due to chance;
(d) factor; and linked effect e.g. wind-blown particles trapped; accumulation of soil; OR
accumulation of organic / dead / decomposed matter / humus; increase in mineral ions / improved water retention / improved soil structure;
OR
nitrogen fixation;
increased nitrate concentration / improved soil fertility;

