Mark schemes

(a) (No - no mark)

1

Graph / bar chart only shows number of species, not the name of the species.

1

- (b) (No no mark)
 - Mutations are spontaneous / random;
 - 2. Only the rate of mutation is affected by environment:
 - Different species do not interbreed / do not produce fertile offspring;4. So mutation / gene / allele cannot be passed from one species to another.

Ignore references to correlation does not prove causation

4

- (c) 1. Initially one / few insects with favourable mutation / allele;
 - 2. Individuals with (favourable) mutation / allele will have more offspring;
 - 3. Takes many generations for (favourable) mutation / allele to become the mostcommon allele (of this gene).

3

[8] (a) 1. No interbreeding / gene pools are separate / geographic(al) isolation;

2

Accept: reproductive isolation as an alternative to no interbreeding.

- 2. Mutation linked to (different) markings/colours;
- 3. Selection/survival linked to (different) markings/colours;
- 4. Adapted organisms breed / differential reproductive success;

Note: 'passed on to offspring' on its own is not sufficient for reproduction.

Change/increase in allele frequency/frequencies;

5

(b) 1. (Compare DNA) base sequence / base pairing / (DNA) hybridisation;

Ignore: compare chromosomes / 'genetic make-up'.

Accept: (compare) genes / introns / exons.

Note: reference to only comparing alleles is 1 max.

2. Different in six (species) /different in different species / similar in three (subspecies) /similar in same species/subspecies;

Ignore: compare chromosomes / 'genetic make-up'.

Reject: 'same alleles/ same DNA bases in three species/subspecies'.

Note: mark point 2 can be awarded without mark point 1.

2

[7]

(a) 0.32.

Correct answer = 2 marks

Accept 32% for 1 mark max

Incorrect answer but identifying 2pq as heterozygous = 1 mark

2

- (b) 1. Mutation produced KDR minus / resistance allele;
 - 2. DDT use provides selection pressure;
 - 3. Mosquitoes with *KDR minus* allele more likely (to survive) to reproduce; 4. Leading to increase in *KDR minus* allele in population.

4

- (c) 1. Neurones remain depolarised;
 - 2. So no action potentials / no impulse transmission.

2

- (d) 1. (Mutation) changes shape of sodium ion channel (protein) / of receptor(protein);
 - DDT no longer complementary / no longer able to bind.

2

[10] (a) 1. <u>Geographic(al)</u> isolation;

4

2. Separate gene pools / no interbreeding / gene flow (between populations);

Accept: reproductive isolation

This mark should only be awarded in context of during the process of speciation. Do not credit if context is after speciation has occurred.

- 3. Variation due to mutation:
- 4. Different selection pressures / different abiotic / biotic conditions / environments / habitats:

Neutral: different conditions / climates if not qualified

Accept: named abiotic / biotic conditions

Different(ial) reproductive success / selected organisms (survive and) reproduce;

Accept: pass on alleles / genes to next generation as equivalent to reproduce

6. Leads to change / increase in allele frequency.

Accept: increase in proportion / percentage as equivalent to frequency

- (b) 1. Capture / collect sample, mark and release:
 - 2. Method of marking does not harm lizard / make it more visible to predators;
 - Leave sufficient time for lizards to (randomly) distribute (on island) beforecollecting a second sample;
 - (Population =) number in first sample x number in second sample divided bynumber of marked lizards in second sample / number recaptured.

- (c) 1. High concentration of / increase in carbon dioxide linked with respiration at night / in darkness;
 - 2. No photosynthesis in dark / night / photosynthesis <u>only</u> in light / day; *Neutral: less photosynthesis*
 - 3. In light net uptake of carbon dioxide / use more carbon dioxide than produced / (rate of) photosynthesis greater than rate of respiration;
 - 4. Decrease in carbon dioxide concentration with height;

More carbon dioxide absorbed higher up

Accept: less carbon dioxide higher up / more carbon dioxide lower down

5. (At ground level) less photosynthesis / less photosynthesising tissue / more respiration / more micro-organisms / micro-organisms produce carbon dioxide.

Neutral: less leaves unqualified or reference to animals

5

[15] (a) 1. Allows (valid) comparison;

5

Number / sample size may vary;

2

(b) 1. Increased chance of (severe malaria) with blood group A / decreased chance of (severe malaria) with sickle cell;

Accept: converse for mild malaria i.e. increased chance of mild malaria with sickle cell / decreased chance of mild malaria with blood group A.

Accept: if answer is comparative e.g. greatest risk of severe malaria with blood group A.

2. One mark for one of the following:

almost equal chance with blood group O / slightly greater chance of mild malaria with O / slightly lower chance of severe malaria with O / $2.5 \times / 2.48 \times /$ more than twice the chance of severe with blood group A / (almost) 50% / half the chance of severe malaria with sickle cell / twice the chance of mild malaria with sickle cell;

Neutral: answers which only refer to or use ratios.

- (c) 1. Individuals with the **Hb**^C (allele) reproduce;
 - 2. Pass on **Hb**^C (allele) which increases in frequency;
 - 3. **Hb^A Hb^A** individuals less likely to survive / reproduce / frequency of **Hb^A** (allele) decreases;

(i) 1. Identical twins show genetic influence / differences between 6 them show environmental influence; Neutral: allows a comparison It must be clear which set of twins is being referred to 2. Non-identical twins (also) show an environmental / non-genetic influence; It must be clear which set of twins is being referred to Do not credit repetition of bullet points in stem 2 (ii) Genes play a greater role / environment plays a lesser role; Must be comparative Neutral: genes are involved Neutral: involves genes and the environment 1 (iii) Any suitable suggestion for a maximum of two marks e.g.: Neutral: 'environment' as in question stem Neutral: unqualified ideas such as health / lifestyle 1. Age; 2. Sex (non-identical twins); 3. Family / medical history (of mental illness); 4. No use of recreational drugs; 5. Ethnic origins; 2 max [6] 1. Chlorophyll absorbs light energy; (a) 7 Accept light energy 'hits' chlorophyll Accept photon for light energy 2. Excites electrons / electrons removed (from chlorophyll); Accept higher energy level as 'excites' 3. Electrons move along carriers / electron transport chain releasing energy;

3.7.3 Evolution Page 4 of 20

Accept movement of H⁺ / protons across membrane releases energy

Energy used to join ADP and Pi to form ATP;

Negate 'produces energy' for either mark but not for both Accept energy used for phosphorylation of ADP to ATP Do not accept P as Pi

5. <u>Photolysis</u> of water produces protons, electrons and oxygen;

3. and 4.

6. NADP reduced by electrons / electrons and protons / hydrogen;

Accept NADP to NADPH (or equivalent) by addition of electrons / hydrogen

Do not accept NADP reduced by protons on their own

5 max

- (b) 1. Variation / variety;
 - 2. Mutation;

Do not accept answers which suggest the mutation is caused by copper

3. Some plants have <u>allele</u> to survive / grow / live in high concentration of copper / polluted soils;

Reference to immunity disqualifies this mark

Do not disqualify mark for references to allele providing resistance
to copper

- 4. (Differential) reproductive success / adapted organisms reproduce;
- 5. Increase in frequency of allele;
- 6. No interbreeding (with other populations) / separate gene pool / gene pooldiffers (from other populations);

Accept reproductive isolation

5 max

[10]

Page 5 of 20

(a) All the fish / all the species / all the populations / all the organisms;

8

Must indicate all / every species.

Reject answers that suggest other fish / organisms might be present.

1

- (b) (i) 1. Capture sample, mark and release;
 - 2. Appropriate method of marking suggested / method of marking does not harm fish;

E.g. Cutting a fin / attaching a tag / paint / marker.

3. Take second sample and count marked organisms; May be awarded from equation if not given here.

Population =
$$\frac{\text{No in }}{\text{sample}_1 \times \text{sample}_2}$$

$$\frac{\text{Number marked in sample}_2}{\text{Number marked in sample}_2};$$

4.

Accept any valid alternative to equation or answer expressed as a ratio.

3 max

(ii) One suitable reason;

Accept other valid answers, which must, however, relate to breeding / only works if population constant.

E.g. population increases / changes (between first and second sample)

1

(c) 1. With different mouth eats different food / has different way of feeding / specificmouth shape for specific food;

Catches more food and gas exchange are neutral

Competition between species / interspecific competition is reduced;
 Reject intraspecific

2

[7] (a) (i) Non-living / physical / chemical factor / non biological;

Do not accept named factor unless general answer given.

(ii) Accept an abiotic factor that may limit photosynthesis / growth;

Reject altitude / height

Water

Named soil factor

Not "soil" / "weather"

Light

Carbon dioxide

Accept Oxygen

Incline / aspect

Wind / wind speed

 Correct explanation for differences between day and night e.g. photosynthesises only during the daytime / no photosynthesis / only respiration at night;

2. Net carbon dioxide uptake during the day / in light

OR

No carbon dioxide taken up at night / in dark / carbon dioxide released at night / in dark;

- 3. At ground level more respiration / in leaves more photosynthesis;
- 4. Carbon dioxide produced at ground level / carbon dioxide taken up in leaves;

Principles

Comparing day and night / light and dark

- 1. Explanation in terms of photosynthesis / respiration
- 2. Effect on carbon dioxide production / uptake

Comparing leaves with ground level

- 3. Explanation in terms of photosynthesis / respiration
- 4. Effect on carbon dioxide production / uptake
- 2 and 4 must relate to why the change occurs
- (c) 1. Variation in original colonisers / mutations took place;
 - 2. Some better (adapted for) survival (in mountains);
 - 2. Allow "advantage so able to survive"
 - 3. Greater reproductive success;
 - Allele frequencies change;
 - 4. Reject gene / genotype

3 max

4

1

[9]

Page 7 of 20

(a) (i) Two marks for correct answer of 4;;

10

One mark for calculation involving 0.2×0.2 or 0.04;

2

(ii) 0.2 / the frequency remains the same;

Reject if wrong frequency is quoted

1

- (b) (i) 1. There is a <u>probability</u> of 5% / 0.05;
 - That difference in frequencies / difference in results are due to <u>chance</u>;
 Accept 95% probability changes in frequencies not different as a result of chance

2

- (ii) 1. Directional;
 - The recessive allele confers disadvantage / the dominant allele confers advantage / more likely to survive / reproduce;

Assume "it" to refer to the recessive allele

2. References to selection do not gain credit as the term is in the question. Allow reference to phenotype / enzyme functionality (instead of allele) when describing advantage / disadvantage.

2

[7] (a) (i) Antibiotics kill other bacteria / Clostridium is resistant;

11

Less / no competition so (Clostridium)

reproduces / replicates / multiplies / increases in number;

Reference to bacteria being 'immune' negates first marking point.

Reference to mitosis negates second marking point.

2

(ii) Immune system less effective / more likely to have other infections / been in hospital;

Accept: 'Weak / lower' immune system'.

1

(b) Attaches to active site (of enzyme);

(Methicillin) is a competitive inhibitor / prevents monomers / substrate attaching (to enzyme);

'Competes for active site' = 2 marks.

Neutral: 'Prevents monomers joining / attaching to each other'.

Allow one mark max for answers relating to non-competitive inhibitor changing active site / preventing substrate attaching. Do not penalise Methicillin forms an enzyme / substrate complex.

(c) (i) Have other illness / medical condition / 'weak' immune system / disease /infection;

Reject: Due to 'other factors', 'are smokers', 'are obese' unless

related to disease or illness.

1

(ii) Increase up to 2006 / 20 (per 100 000) then decreases;

1

(iii) Correct answer in range of 52 - 59.1% = two marks;

Incorrect answer but shows change as between 4.8 - 5.2 / shows correct subtraction giving this change e.g. 14 - 9 = one mark.

2

[9] (a) Shows mass of wheat seedlings when grown on their own;

12

Allows percentage to be calculated / allows comparison / allows effect of competition to be seen:

2

- (b) 1. Interspecific competition / ryegrass reduces growth of wheat;
 - 2. Justification by using values;

100% with wheat but less when grown with ryegrass

- 3. Competition between shoots had a greater effect than competition betweenroots;
- 4. Justification by use of values;

4

(c) Growth involves enzymes / enzyme-controlled reactions;

Lower temperature means less kinetic energy / fewer collisions / fewer E–S complexes formed;

Wheat and ryegrass affected to a different extent;

Accept other valid physiological processes such as growth involves diffusion / lower temperature means less kinetic energy / molecules move slower.

2 max

Page 9 of 20

[8] (a) Same number of ryegrass seedlings in distilled water;

13

(b) (i) Produce null hypothesis;

Carry out Spearman Rank correlation test / find correlation coefficient;

Use values to show P < critical value / find probability of results being due to chance;

Accept valid example

E.g. There is no correlation between inhibition of germination and the concentration of the extract.

2 max

(ii) May be another factor / named factor (that also inhibits germination);e.g. amount of water in extract

1

(c) (i) Extract inhibits ryegrass germination / extract stops ryegrass starting to grow;

Inhibition of root length / causes ryegrass to have shorter roots;

2

(ii) Scientists crushed plants to get extract;

Plants might not secrete substances in the extract into the soil;

These substances might get broken down in the soil;

Wheat and ryegrass might not grow at the same time / wheat plants might not produce substance when ryegrass is growing;

Concentration of extract in the soil might be different from that in solution;

3 max

[9] (a) 1. (Colonisation by) pioneer (species);

14

- 2. Change in environment / example of change caused by organisms present;
- 3. Enables other species to colonise / survive;
- 4. Change in diversity / biodiversity;
- 5. Stability increases / less hostile environment;
- 6. Climax community;

Example of change e.g. formation of soil / humus / organic matter / increase in nutrients;

Do not accept genetic diversity for mark point 4.

5 max

- (b) 1. Geographical isolation;
 - Variation due to mutation;

		4.	Selection for different / advantageous, features / characteristics / mutation / /allele / differential reproductive success / (selected) organisms survive and reproduce;	
		5.	Leads to change in <u>allele</u> frequency; In this question must refer to allele where appropriate, not gene.	5
			[10] (a) Small surface area to volume ratio /	
15		Lose	e less heat (to the environment) / for insulation when they are sitting on eggs;	2
	(b)	(i) sno	The further north / higher the latitude, the higher the percentage (of white wgeese);	1
		(ii)	Snow lying longer / melts slower further north / at greater latitudes;	1
			White geese better camouflaged (further north);	
			Predation linked to survival / reproductive success;	
			Q In order to gain the last marking point, candidates must explain how survival or reproductive success is affected.	3
	(c)	Sno	ow melts earlier / snow melts further north / less snow;	
			te geese decreasing as less well camouflaged / at disadvantage / blue geese easing as better camouflaged / at an advantage;	2
	(d)	(i)	Stabilising;	2
	, ,	`,	Do not accept stable	1
		(ii)	Few geese survive at the extremes / most survive from the middle of the range;	1
			[10] (a) (i) To cut to	the DNA;
16			Reject breakdown, cutting out	1
		(ii)	To separate the (pieces of) DNA;	1
	(b)	Cor	mplimentary base sequence / complementary DNA; binds to both (haplotypes);	•

Different environmental / abiotic / biotic conditions / selection pressures;

3.

		Labe	el would show up in both;	
			Idea of complimentarity required	2
	(c)	(i)	Y chromosome inherited / comes from male parents / only found in males;	1
		(ii)	Mitochondria in egg / female gamete / no mitochondria come from sperm / malegamete;	1
	(d)	(i)	Allows comparison;	
			Different (sized) areas covered;	2
		(ii)	Wolves do not eat all of prey animal / do not eat (large) bones / skin;	
			Inedible parts make up different proportions / wolf eats different proportions;	2
	(e)	Lim	ited by food / prey; as prey increases so do wolf numbers / positive correlation;	
		Larg	e range so other factors involved;	
			[12] (a) Kingdom / phyl	2 um / class
17				1
	(b)	(i)	6;	1
		(ii)	Family;	1
		(iii)	The two species of <i>Mirounga</i> shared a common ancestor more recently than they did with <i>Monarchus tropicalis</i> ;	1
	(c)	Diffe	erence in DNA / base sequence / alleles / genes;	1
10] (a)		nnot make (active) enzyme A (which converts precursor to linamarin) / cannot mak	[5 e
18 li	nama	rın;		1

(ii) Meiosis separates alleles / homologous chromosomes / pairs of chromosomes; Independent assortment / means either of A / a can go with either of L / I; Accept "random segregation" but cancel if reference to crossingover

(c) From parental genotypes: **AaLI** × **AaLI** (no mark)

Note: If wrong parental genotypes / wrong gametes: ALLOW correct derivation of offspring genotypes = 1 max

Correct derivation of offspring genotypes; max 2 marks if error in Punnett square

	AL	Al	aL	al
AL	AALL	AALI	AaLL	AaLl
Al	AALI	AAII	AaLl	Aall
aL	AaLL	AaLl	aaLL	aaLl
al	AaLl	Aall	aaLl	aall

Correct identification of offspring genotypes with at least one **A** and two **I** alleles (= grey cells in above table);

Correct proportion: 3 / 16 / 3:13 / 18.75%;

(d) (i) There was no (significant) difference in damage between cyanogenic andacyanogenic / being cyanogenic has no effect;

(ii) The difference (from expected / from chance variation) is significant / difference / results not just due to chance;

Reject null hypothesis;

Being cyanogenic does help protect from slug damage;

- (e) High slug population:
 - 1. Find only cyanogenic plants / only cyanogenic plants survive;
 - 2. (Cyanide release) limits / stops feeding by slugs / slugs killed; *Accept: converse argument re. acyanogenic plants*

Low slug population:

- Find both types of plant;
- Less selection pressure on plants from slugs / no selective advantage / noselection / described;

[15]

4

2

3

1

(a) (i) 2;

19

Allow 1.75

1

(ii) 30 / 60 ÷ answer to part (i) if incorrect; Allow 34(.315)

1

(b) Song characteristic of species / differs between species;

Song linked to courtship at night / living underground;

2

(c) Females not attracted to call of male / does not recognise male;

Because of differences in song;

Necessary precursor to mating;

Hybrids are sterile;

2 max [6]

(a) Table completed as below:

2	0

Kingdom	Animalia / Animals	
Phylum	Chordata	
Class	Mammalia	
Order	Rodentia	
Family	Caviidae	
Genus	Cavia	Column 1 correct;
Species	porcellus	Column 2 correct;

(b) Mutation occurs;

Correct e.g. of isolating mechanism

e.g.

temporal - different breeding seasons / feeding times /

ecological / behavioural – different courtship displays / different niches / habitats / feeding areas /

mechanical - mismatch of reproductive parts /

gamete incompatibility – sperm killed in female's reproductive tract / hybrid inviability / hybrid infertility;

Ignore references to "genetic isolation" or "reproductive isolation"

Different selection pressures operate / changes in allele frequency / divergence of gene pools;

(c) Using candidate's symbols for alleles – e.g. B = black, b = brown, S = short, s = long:

Parental genotypes <u>correct</u>: Male **A** Female **B**

SSBb SsBB;

Gametes correctly <u>derived</u> from candidate's parental genotypes: SB Sb SB sB;

offspring genotypes correctly <u>derived</u> from candidate's

suggested gametes - accept Punnett square or line diagram;

offspring genotypes correct: SSBB SsBB SSBb SsBb;

If monohybrid:cross 0 marks

(d) There is no (significant) difference between observed and expected results / any differenceis due to chance;

[10] (a) Excitation of chlorophyll molecule / electrons / energy of (pairs of)

21

electrons raised to higher energy level;

Electron(s) emitted from chlorophyll molecule;

Electron(s) to electron transport chain;

Loss of energy by electron(s) along electron transport chain;

Energy lost by electron(s) is used to synthesise ATP;

From ADP + Pi;

"By electrons" need not be stated in each marking point if it can be reasonably inferred that the candidate is referring to electrons

max 5

Page 15 of 20

3

4

(b) Little green light reaches bottom as absorbed by surface dwellers / water;
 Red and blue not absorbed and so penetrate;
 Variation in pigments of sediment dwellers;

Bacteria with chlorophyll at an advantage as chlorophyll absorbs red and blue; (Survive to) reproduce in greater numbers and pass on advantageous alleles / genes in greater numbers / increase in frequency of advantageous alleles in subsequent generations;

Increase in frequency / numbers of bacteria with chlorophyll;

6

[11] (a) 1. frequent use of antibiotic creates selection pressure / antibiotic kills bacteria;

- 2. bacteria with mutation / resistance have (selective) advantage over others / described;
- 3. (survive to) reproduce more than other types pass on advantageous allele / mutated allele in greater numbers;
- 4. frequency of (advantageous) allele increases in subsequent generations;

(penalise use of "gene" instead of allele once only)

5. frequency of resistant types increases in subsequent generations;

5

(b) correct answer = 0.18; And three marks for three of: p + q = 1 and $p^2 + 2pq + q^2 = 1$; $0.01 = q^2$; q = 0.1; p = 0.9 frequency of heterozygotes = $2pq = 2 \times 0.1 \times 0.9 / 2 \times candidates p \times candidates q;$

4 max

[9] (a) (i) Continuous variation – range of values / not discrete categories / many

23 categories / no gaps;

1

(ii) Crossing over / chiasmata;Random segregation / independent assortment;In meiosis I and meiosis II;

max 2

- (b) Range influenced by single 'outlier' (accept anomaly) / converse for S.D.;
 - S.D. shows dispersion / spread about mean / range only shows highest and lowest values / extremes;

Or

S.D. allows statistical use:

Tests whether or not differences are significant;

max 2

[4]

(a) principle of intraspecific competition;

for amount of food available; more energy needed to find food / less energy to produce eggs;

3.7.3 Evolution Page 16 of 20

\sim	1	_
U	I	≺

number of territories; more energy spent fighting / defending territory;

0R

availability as prey; predators spend less time searching for nests;

2 max

(b) (i) age of bird - young or old birds produce fewer eggs; time of breeding - early or late breeding less food available / temperature effect; genotype - variation in genetic ability to produce eggs; quality of territory - description of some relevant resource in territory;
 (reject food as resource in territory if given in(a))
 predation of eggs - lays more to replace eaten eggs;

1 max

(ii) when high number of eggs, each individual young will receive less food; reference to mortality rates to disease / predators for low numbers of eggs; so in both cases low number of offspring will reach maturity / survive; so less likely to pass on genes / alleles;

3

[6] (a) 1 4 year cycles;

25

- 2 predator / stoat peaks after prey / lemming;
- 3 lemmings increase due to low numbers of stoats / available food;
- 4 more food for stoats so numbers increase;
- 5 increased predation reduces number of lemmings;
- 6 number of stoats decreases due to lack of food / starvation;

6

(b) smaller populations have fewer different alleles / more homozygosity / lessheterozygosity / smaller gene pool / lower genetic variability; migrants bring in new alleles / increase gene pool;

2

(c) geographical isolation of populations; variation present in population(s);
 different environmental conditions / different selection pressures /
 different phenotypes selected;
 change in genetic constitution of populations / gene pools / allele frequency;

[12]

(a) colder / below 0°C (January) areas, cyanogenic plants die in this cold / acyanogenic

26		26
----	--	----

survive; non-cyanogenic allele / gene passed on more often / its frequency increases; warmer (January) areas cyanogenic plants at advantage, because of less herbivore selection pressure / feeding; so cyanogenic survive more often to pass on cyanogenic allele / gene.

4 max

(b) large (and equal) number of quadrats in each area; (reject several) random sampling method, described; (accept described 'systematic' method) percentage cover / point hits per quadrat / count plants; mean / average value for each area; statistics test to see if differences significant.

4 max

[8] (a) variation present in (original population);

(copper) tolerant individuals more likely to survive; (these reproduce and) pass on genes (to next generation / offspring); more / increase (in frequency) of copper tolerance alleles / genes;

4

- (b) 1. reproductively isolated / no interbreeding (due to different flowering times);
 - 2. conditions different for two populations / different selection pressures;
 - 3. different features or plants are selected or survive / different adaptations;
 - 4. populations become (genetically) different / unable to produce fertile offspring;

[8] (a) zooplankton nearer surface at night;

28

algae only found at surface; photosynthetic; no / little light below 30 / 40m;

3

(b) (i) with increasing time predators have been present in the lake, the greater the depth at which the zooplankton occur during the day;

1

(ii) variation in migration behaviour; vertical migration reduces chance of predation / prey can't be seen in low light intensity; those that migrated more likely to reproduce; genes / alleles (for behaviour) passed to next generation; increase in frequency of gene / allele in population;

3 max

[7]

breed together; (a) **29** If fertile offspring, then same species; 2 (b) isolation of two populations; variation already present due to mutations; different environmental conditions / selection pressures leading to selection of different features and hence different alleles; different frequency of alleles; separate gene pools / no interbreeding; (c) selection of mate dependent on colour pattern; prevents interbreeding / keeps gene pools separate; Genetic (factors)/genes/alleles/mutations/meiosis; [8] (a) 30 Environmental (factors)/environment; 1 (b) New species form from different populations/groups/gene pools; 1 In different areas/from isolated populations; Accept alternatives/descriptions for 'populations' 1 [4] (a) Formation of new species / reproductive isolation; 31 Ignore ref. to mechanisms involved From a population (living in the same area / place) / without geographical isolation; 2 (b) Small shell of T, Accept converse statements Wave action (greatest) at top of shore; Note - pairs of statements - environmental factor; and possible effect on survival; Only small snails can get into cracks in rock (to shelter); Thick shell of M, More crabs in middle shore;

3.7.3 Evolution Page 19 of 20

No mark for giving differences

Thicker shelled snails less easy to break open;

OR

More rocks in middle shore to be moved by waves;
Thicker shelled snails less easily broken by rocks;
Large opening of T,
More wave action likely to wash snails away;
Larger opening, (suggests) snails with larger foot to hold on with less likely to be washed away;

OR

Smaller opening of M, More crabs in middle shore; Snails with smaller opening harder to get claws into;

4 max

(c) Reproductive isolation required for speciation;

Accept descriptions of reproductive isolation

Isolation by male choice / form T males nearly always choose form T female, so (nearly) reproductively isolated (from form M); Behavioural isolation / mechanism;

2 max

[8]

Page 20 of 20