Mark schemes

(a) 0.32 .

Correct answer = 2 marks
Accept 32\% for 1 mark max
Incorrect answer but identifying $2 p q$ as heterozygous = 1 mark
(b) 1. Mutation produced KDR minus / resistance allele;
2. DDT use provides selection pressure;
3. Mosquitoes with KDR minus allele more likely (to survive) to reproduce; 4. Leading to increase in KDR minus allele in population.
(c) 1. Neurones remain depolarised;
2. So no action potentials / no impulse transmission.
(a) 1. (Mutation) changes shape of sodium ion channel (protein) / of receptor(protein);
2. DDT no longer complementary / no longer able to bind.
(a) 1. (Expression/appearance/characteristic due to) genetic constitution/genotype/allele(s);

Accept: named characteristic.
Accept: homozygous/ heterozygous/genes/DNA.
Ignore: chromosomes.
2. (Expression/appearance/characteristic due to) environment;
(b) (i) 1. (Individual) 2 has colour vision but 4 is colour blind / 10 has colour vision but 12 is colour blind OR 4/12 is colour blind but parents have colour vision;
2. So $2 / 10$ must be heterozygous/carriers;

Accept: (1), 2 and 4 or 10, (11) and 12.
Accept: any suitable description and explanation equivalent to points 1 and 2.
Reject: (both) parents heterozygous/carriers.
Accept: correct genotypes for 2 and 10.
Accept: for 2 marks, if it was dominant the daughters (8 and 10) of individual 4 would be colour blind.
(ii) $X^{B} X^{b}$ or $X^{b} X^{B}$;

Reject: Bb /bB
Accept: XBXb or XbXB;
Accept: use of other letter than B
e.g. $X^{R} X^{r}, X^{H} X^{h}$.
(c) (i) 2 marks for the correct answer of $0.0625 / 6.25 \% / 1 / 16$;;

1 mark for incorrect answer but shows $0.03125 / 3.125 \% / 1 / 32$;
Accept: 0.063 / 0.06 / 6.3\% / 6\% for 2 marks.
Accept: incorrect answer but shows / 0.0313 / 0.031 / 0.03 / 3.13\% / $3.1 \% / 3 \% / 1 / 4 \times 1 / 4 / 0.25 \times 0.25$ for 1 mark.
Note: if probability is calculated as a percentage but no \% shown in the answer then deduct one mark. For example 6.25 = one mark, $3.125=$ zero.
(ii) 2 marks for the correct answer of 48(\%);;

1 mark for an incorrect answer but shows understanding that $2 p q=$ heterozygous or attempts to calculate 2pq;

1 mark maximum for the answer of 0.48 .
(a) Both alleles are expressed / shown (in the phenotype).

Accept: both alleles contribute (to the phenotype)
Neutral: both alleles are dominant
(b) Only possess one allele / Y chromosome does not carry allele / gene / can't beheterozygous.

Accept: only possess one gene (for condition)
Neutral: only 1 X chromosome (unqualified)
(c) 1. $X^{G} X^{B}, X^{B} X^{B}, X^{G} Y, X^{B} Y$;

Accept: equivalent genotypes where the Y chromosome is shown as a dash e.g. X^{G}-, or is omitted e.g. X^{G}
Reject: $G B, B B, G Y, B Y$ as this contravenes the rubric
2. Tortoiseshell female, black female, ginger male, black male;
3. (Ratio) $1: 1: 1: 1$

2 and 3. Award one mark for following phenotypes tortoiseshell, black, (black) ginger in any order with ratio of 1:2:1 in any order.
Allow one mark for answers in which mark points 1, 2 and 3 are not awarded but show parents with correct genotypes i.e. $X^{G} X^{B}$ and $X^{B} Y$ or gametes as X^{G}, X^{B} and X^{B}, Y
3. Neutral: percentages and fractions
3. Accept: equivalent ratios e.g. for $1: 1: 1: 1$ allow $0.25: 0.25: 0.25$: 0.25
(d) (i) Correct answer of $0.9=2$ marks;

Incorrect answer but shows $q^{2}=0.81=$ one mark.
Note: 0.9% = one mark
(ii) Homozygous dominant increases and homozygous recessive decreases.
[8] (a) (Recessive) allele is always expressed in females / females have one
(recessive) allele / males need two recessive alleles / males need to be homozygous recessive / males could have dominant and recessive alleles / be heterozygous / carriers;

Accept: Y chromosome does not carry a dominant allele. Other answers must be in context of allele not chromosome or gene.
(b) (i) 1. 1, (2) and 5;

Accept: for 1 mark that 1 and 2 have slow (feather production) but produce one offspring with rapid (feather production).
Neutral: any reference to 3 being offspring of 1.
2. 1 must possess / pass on the recessive allele / 1 must be a carrier / heterozygous / if slow (feather production) is recessive all offspring of (1 and 2) would be slow (feather production) / if rapid (feather production) was dominant 1 would have rapid (feather production);
Reject: both parents must be carriers / possess the recessive allele.
Reject: one of the parents (i.e. not specified) must be a carrier/ heterozygous.
(ii) $5=X^{f} Y^{\prime} / X^{f} Y^{-} / f / f-/ f Y$;
$7=X^{\mp} X^{\dagger}$ and $X^{F} X^{\mp}$ (either way round) /
or $X^{f} X^{F}$ and $X^{F} X^{F}$ (either way round) /
or $X^{F} X^{f}, X^{f} X^{F}$ and $X^{F} X^{F}$ (in any order);
Note: allow $5=X^{\dagger} Y, X^{\dagger} Y$.
Accept: for both 5 and 7 a different letter than F. However, lower case and capital letter must correspond to that shown in the answer. For example accept $7=X^{R} X^{r}$ and $X^{R} X^{R}$.
(iii) $X^{F} X^{f}$ and $X^{\dagger} Y$ or $X^{f} X^{F}$ and $X^{\dagger} Y$ or $X^{F} X^{f}$ and $X^{f} Y^{-}$or $X^{f} X^{F}$ and
$\mathrm{X}^{\mathrm{f}} \mathrm{Y}^{-} /$or Ff and $\mathrm{fY} /$ or Ff and $\mathrm{fY} \mathrm{Y}^{-} /$or Ff and f - /
or Ff and f ;
Accept: a different letter than F. However, lower case and capital letter must correspond to that shown in the answer.
Accept: each alternative either way round.
(c) Correct answer of 32 (\%) = 3 marks;;;

Accept: $0.32=2$ marks
If incorrect answer, allow following points

1. $p^{2} / q^{2}=4 \% / 0.04 /$ or $p / q=0.2$;
2. Shows understanding that $2 \mathrm{pq}=$ heterozygotes / carriers;

Accept: answer provided attempts to calculate 2pq. This can be shown mathematically i.e. $2 x$ two different numbers.
2. Number / sample size may vary;
(b) 1. Increased chance of (severe malaria) with blood group A / decreased chance of (severe malaria) with sickle cell;

Accept: converse for mild malaria i.e. increased chance of mild malaria with sickle cell / decreased chance of mild malaria with blood group A.
Accept: if answer is comparative e.g. greatest risk of severe malaria with blood group A.
2. One mark for one of the following:
almost equal chance with blood group O / slightly greater chance of mild malaria with $\mathrm{O} /$ slightly lower chance of severe malaria with $\mathrm{O} / 2.5 \times / 2.48 \mathrm{x} /$ more than twice the chance of severe with blood group A / (almost) 50% / half the chance of severe malaria with sickle cell / twice the chance of mild malaria with sickle cell;

Neutral: answers which only refer to or use ratios.
(c) 1. Individuals with the $\mathbf{H b}^{\mathrm{C}}$ (allele) reproduce;
2. Pass on $\mathbf{H b}^{\text {C }}$ (allele) which increases in frequency;
3. $\quad \mathbf{H b}^{\mathbf{A}} \mathbf{H b}^{\mathbf{A}}$ individuals less likely to survive / reproduce / frequency of $\mathbf{H b}^{\mathbf{A}}$ (allele) decreases;

6 1. Use 1 in 400 to find frequency of homozygous recessive / q^{2}

OR

1 in 400 gives frequency of 0.0025 ;
Note - convention has recessive allele as q and dominant allele as p but allow reversal (since outcome is the same) as long as this is consistent throughout
2. Find square root of q^{2} / find square root of 0.0025 ;
3. Use of $p+q=1.0 /$ determine frequency of both alleles $/$ both p and $q /$ find $p=0.95$ and q $=0.05$;
4. Use of $2 p q$ to find carriers / heterozygotes;

The question requires a description but credit working where correct as alternative since this shows the stages
[3] (a) Is always expressed / shown (in the phenotype);

Reject 'is always present' without further qualification
(b) $C^{B} C^{B}, C^{B} C^{P}$ and $C^{B} C^{Y}$;

All three are required for the mark
Or
$\mathrm{C}^{B} \mathrm{C}^{\mathrm{B}}, \mathrm{C}^{P} \mathrm{C}^{\mathrm{B}}$ and $\mathrm{C}^{Y} \mathrm{C}^{\mathrm{B}}$;
Accept $C^{B} C^{B}, C^{B} C^{P}, C^{B} C^{Y}$,
$C^{Y} C^{B}$ and $C^{P} C^{B}$
Accept $B B, B P$ and $B Y$ or
$B B, B P, B Y, Y B$ and $P B$
(c) 1. Two genotypes (as parents) shown as $\mathrm{C}^{P} \mathrm{C}^{Y}$

Award one mark maximum for candidates who have misread the question and complete a correct genetic cross between a pink snail,
$C^{P} C^{\gamma}$ and a yellow snail, $C^{\curlyvee} C^{\curlyvee}$ to give pink and yellow offspring
$\underline{\text { Or }}$
Two sets of gametes shown as C^{P} and C^{Y};
2. Genotypes of offspring shown as $C^{P} C^{Y}, C^{P} C^{P}$ and $C^{Y} C^{Y}$;
3. Above genotypes of offspring correctly linked to phenotypes i.e. pink andyellow;

Accept ratio (or equivalent) of 3 pink: 1 yellow for mark point 3
(d) 1. Correct answer of $42 \%=3$ marks

Answer of $0.42=2$ marks
Award one mark maximum for answer of
49.9 / 49.98 / 50% or 0.49 / 0.5
2. $\mathrm{q}^{2}=0.49 / 49 \%$ OR $\mathrm{q}=0.7 / 70 \%$

Award one mark maximum for answer of $40.8 / 41 \%$ or 0.41
3. Shows understanding that $2 \mathrm{pq}=$ heterozygotes / carriers / shows answer isderived from 2pq;

One mark for calculation involving 0.2×0.2 or 0.04 ;
(ii) 0.2 / the frequency remains the same; Reject if wrong frequency is quoted
(b) (i) 1. There is a probability of $5 \% / 0.05$;
2. That difference in frequencies / difference in results are due to chance; Accept 95\% probability changes in frequencies not different as a result of chance
(ii) 1. Directional;
2. The recessive allele confers disadvantage / the dominant allele confers advantage / more likely to survive / reproduce;
Assume "it" to refer to the recessive allele
2. References to selection do not gain credit as the term is in the question. Allow reference to phenotype / enzyme functionality (instead of allele) when describing advantage / disadvantage.
] (a) (i) Only expressed / shown (in the phenotype) when homozygous / two (alleles) are
9 present / when no dominant allele / is not expressed when heterozygous;
(ii) Both alleles are expressed / shown (in the phenotype);

Allow both alleles contribute (to the phenotype).
(b) (i) Evidence (not a mark)

3 and 4 / two Rhesus positives produce Rhesus negative child / children / 7/9;
Explanation (not a mark)
Both Rhesus positives / 3 and 4 carry recessive (allele) / are heterozygous / if Rhesus positive was recessive, all children (of 3 and 4) would be Rhesus positive / recessive;

Do not negate mark if candidate refers to gene rather than allele.

Answers including correct and incorrect evidence $=$ zero marks evidence and explanation.
(ii) Evidence (not a mark)

3 would not be / is Rhesus positive / would be Rhesus negative;
Explanation (not a mark)
3 would receive Rhesus negative (allele) on X (chromosome) from mother / 3 could not receive Rhesus positive (allele) from mother / 3 would not receive Rhesus positive (allele) / X (chromosome) from father / 1 / 3 will receive Y (chromosome) from father / 1;

OR

Evidence (not a mark)
9 would be Rhesus positive / would not be / is Rhesus negative / 8 and 9 / all daughters of 3 and 4 would be Rhesus positive;

Explanation (not a mark)
As 9 would receive X chromosome / dominant allele from father / 3;
Do not negate mark if candidate refers to gene rather than allele.
One mark for evidence and one mark for explanation linked to this evidence.

Any reference to allele being on Y chromosome negates mark for explanation.
(c) Correct answer of $48(\%)=3$ marks;;;
$q^{2} / p^{2}=16 \% / 0.16 / p / q=0.4 ;$
Shows that 2pq = heterozygotes / carriers;
Final answer of $0.48=2$ marks
Allow mark for identifying heterozygotes if candidate multiplies incorrect p and q values by 2.
(a) The frequency / proportion of alleles (of a particular gene);

Will stay constant from one generation to the next / over generations / no genetic change over time;

Providing no mutation / no selection / population large / population genetically isolated / mating at random / no migration;

The three principles for marking are:
What feature
What happens to it
Providing...
Accept: genotype / explanation of genotype
Accept: alternative wording, e.g. there is no gene flow / genetic drift for genetically isolated.
(b) White / deaf cats unlikely to survive / selected against;

Will not pass on allele (for deafness / white fur) (to next generation) / will reduce frequency of allele;

Accept: alternative wording, e.g. have a disadvantageous phenotype
Neutral: will not breed
(c) In Paris / London frequencies (of these alleles) add up to more than 1;

Can be shown by correct figures to be more than 1
e.g. $0.71+0.78=1.49$

Accept: more than 100\%
(d) Two marks for correct answer of 44(.22);;

One mark for incorrect answer in which p / frequency of H determined as 0.67 and q / frequency of h as 0.33

OR
Answer given as 0.44(22);
(a) Parents genotypes Aabb aaBb ;

11 Gametes formed Ab ab aB ab;
if parental genotypes wrong allow correctly derived gametes only
Offspring genotypes AaBb Aabb aaBb aabb
and
Offspring phenotypes 1 Walnut; 1 Pea: 1 Rose: 1 single;
Just one mark for offspring genotypes and phenotypes
If parents not diploid, no marks gained
(b) Correct answer 0.6, however derived, scores 2 marks Wrong answer, but evidence of correct working

22
(e.g. p / q = 0.36) scores 1 mark
[5] (a) 1. frequent use of antibiotic creates selection pressure / antibiotic kills bacteria;
2. bacteria with mutation / resistance have (selective) advantage over others / described;
3. (survive to) reproduce more than other types pass on advantageous allele / mutated allele in greater numbers;
4. frequency of (advantageous) allele increases in subsequent generations;
(penalise use of "gene" instead of allele once only)
5. frequency of resistant types increases in subsequent generations;
(b) correct answer $=0.18$; And
three marks for three of: $p+q$
$=1$ and $p^{2}+2 p q+q^{2}=1$;
$0.01=q^{2} ; q=0.1 ; p=0.9$ frequency of heterozygotes $=2 p q=2$
$\times 0.1 \times 0.9 / 2 \times$ candidates $p \times$ candidates q;
4 max
[9] (a) Population - organisms of one species in an ecosystem / habitat / area;
13
Community - organisms of all species / all populations in an ecosystem / habitat / area;
(b) (i) No immigration / migration (Ignore references to emigration);

No reproduction (lgnore references to death);
Idea of mixing;
Marking does not influence behaviour / increase vulnerability to predation;
Sample / population large enough;
$\max 2$
(ii) $\frac{96 \times 77}{11}$
; 672;
Correct answer (however derived) scores 2 marks Incorrect answer with evidence of correct method scores 1 mark.
(c) Principle of randomly placed quadrats and method of producing randomquadrats;
(Reject 'throwing')
Valid method of obtaining no. dandelions in given area (mean per quadrat / total no. in many quadrats);
Multiply to give estimate for total field area;
(d) (i) Niche of A-1;

Niche of B-3;
Too small for B/too hot for A-4;
Too large for A / too cold for B-2;
All four correct = 2 marks; any 2 correct = 1 mark
(ii) Original population living in one area / 2 species evolved in the area;
Idea of genetic variability;
Concept of reproductive isolation;
Possible mechanism;
Gene pools become increasingly different;
Until interbreeding does not produce fertile offspring;

14 (a) Mutation / (spontaneous) change in a gene / change in DNA;
(b) (i) Correct answer: 0 / 6;;

2 marks OR
Use of $56 \quad \frac{176}{2}$
and
or $88 / \underline{56 \times 2}$ or 112 and $176 ; 1$ mark $\max 2$
(ii) 64;
(c) (i) Correct answer $=42 \% ; ;$; (only if $\left.q^{2}=0.49\right)$

OR 0.42;;
OR
$p+q=1 / p^{2}+2 p q+q^{2}=1 / p=1-0.7 / q^{2}=0.49 / q=0.7 ;$
Answer = 2pq / use of appropriate numbers; 2 marks
$\max 3$
(ii) 1. Parental genotypes correct: both $\mathbf{W}^{\mathrm{R}} \mathrm{W}^{\mathrm{S}}$ (ACCEPT ‘RS')

AND
$W^{\text {s }}$ (ACCEPT 'S') / gamete from each parent;
2. $\mathbf{W}^{\mathbf{S}} \mathbf{W}^{\mathbf{S}}$ (ACCEPT 'SS’) / offspring formed and identified as susceptible;

If different symbols:

- defined : max 2 marks
- not defined max 1 mark (= pt.2)
(iii) 1. Description: decrease + rate of decrease slows with time;

Explanation: Any three from:
2. Resistant rats / rats with $\mathbf{W}^{\mathbf{R}}$ allele survive

OR susceptible / $\mathbf{W}^{s} \mathbf{W}^{s}$ rats killed
3. (more likely) to pass on $\mathbf{W}^{\mathbf{R}}$ allele to offspring / less likely to pass on $\mathbf{W}^{\mathbf{S}}$ /
higher proportion of next generation has $\mathbf{W}^{\mathbf{R}}$ allele / lower proportion has $\mathbf{W}^{\mathbf{S}}$;
4. Chance of mating with $\mathbf{W}^{\mathbf{S}} \mathbf{W}^{\mathbf{S}}$ is reduced / $\mathbf{W}^{\mathbf{S}} \mathbf{W}^{\mathbf{S}}$ becomes rare;
5. Rate of selection against $\mathbf{W}^{\mathbf{S}}$ slows because $\mathbf{W}^{\mathbf{S}}$ allele is in heterozygotes;
$\max 4$
(iv) No selective advantage / All genotypes equally fertile;

Large population;
Random mating; (IGNORE 'random fertilisation')
No mutation;
No emigration / immigration;
[15] (a) Gg / suitable equivalent;

Grey : black about 3: 1;
[Note: Can be in table / diagram]
(b) To determine the probability;
[Accept: Likelihood]
Of the results being due to chance;
[Accept: Coincidence]
(c) (i) both alleles will be expressed (in the phenotype);
(ii) $0.25 / 25 \%$; $=2$ marks
$C^{N}=250 / 1000 ;=1$ mark
(iii) $\quad P^{2}=(0.25)^{2} / 0.0625 /$ square of calculated figure for C^{N}; $=2$ marks $p^{2}+2 p q+$ $q^{2}=1.0 ;=1$ mark $=31.25 / 31$;
[Accept: Derived from either p^{2} or q^{2}]

