Mark schemes

(a)	(Genes / loci) on same chromosome.					
1			1			
(b)	 GN and gn linked; GgNn individual produces mainly GN and gn gametes; Crossing over produces some / few Gn and gN gametes; 4. So few(er) Ggnn and ggNn individuals. 	4				
(c)	(Grey long:grey short:black long:black short) =1:1:1:1	1				
(d)	1. Chi squared test;2. Categorical data.	2	[8]			

2

1

2

Accept: named characteristic. Accept: homozygous/ heterozygous/genes/DNA. Ignore: chromosomes. 2. (Expression/appearance/characteristic due to) environment; (b) (i) 1. (Individual) 2 has colour vision but 4 is colour blind / 10 has colour vision but 12 is colour blind OR 4/12 is colour blind but parents have colour vision; 2. So 2/10 must be heterozygous/carriers; Accept: (1), 2 and 4 or 10, (11) and 12. Accept: any suitable description and explanation equivalent to points 1 and 2. Reject: (both) parents heterozygous/carriers. Accept: correct genotypes for 2 and 10. Accept: for 2 marks, if it was dominant the daughters (8 and 10) of individual 4 would be colour blind. X^BX^b or X^bX^B; (ii) Reject: Bb / bB Accept: XBXb or XbXB; Accept: use of other letter than B e.g. $X^{R}X^{r}$, $X^{H}X^{h}$. (c) (i) 2 marks for the correct answer of 0.0625 / 6.25% / $\frac{1}{16}$; 1 mark for incorrect answer but shows $0.03125 / 3.125\% / \frac{1}{32}$; Accept: 0.063 / 0.06 / 6.3% / 6% for 2 marks. Accept: incorrect answer but shows / 0.0313 / 0.031 / 0.03 / 3.13% / 3.1% / 3% / ¼ × ¼ / 0.25 × 0.25 for 1 mark. Note: if probability is calculated as a percentage but no % shown in the answer then deduct one mark. For example 6.25 = one mark, 3.125 = zero.

(ii) 2 marks for the correct answer of 48(%);;
 1 mark for an incorrect answer but shows understanding that 2pq = heterozygous or attempts to calculate 2pq;

1 mark maximum for the answer of 0.48.

[9] (a) 1. Reduction in ATP production by aerobic respiration;

	2. 3.	Less force generated because fewer actin and myosin interactions in muscle; Fatigue caused by lactate from anaerobic respiration.	3	
(b)	Cou	iple A,		
	1.	Mutation in mitochondrial DNA / DNA of mitochondrion affected;		
	2. 3.	All children got affected mitochondria from mother; (Probably mutation) during formation of mother's ovary / eggs;		
	0.	(i robably matalien) daming formation of motifol o ovary (oggo,		
		ple B , Mutation in publicar game / DNA in publicus offected:		
	4. 5.	Mutation in nuclear gene / DNA in nucleus affected; Parents heterozygous;		
	6.	Expect 1 in 4 homozygous affected.		
			4 max	
(c)	1. 2.	Change to tRNA leads to wrong amino acid being incorporated into protein; Tertiary structure (of protein) changed;		
	3.	Protein required for oxidative phosphorylation / the Krebs cycle, so less / noATP made.		
			3	
(d)	1.	Mitochondria / aerobic respiration not producing much / any ATP;		
()	2.	(With MD) increased use of ATP supplied by increase in anaerobic respiration;		
	3.	More lactate produced and leaves muscle by (facilitated) diffusion.		
			3	
(e)	1.	Enough DNA using PCR;		
	2.	Compare DNA sequence with 'normal' DNA.	2	
			2	[15]
(\mathbf{a})	4	(Depetien with ATD) brocks/allows binding of myssin to estin/actinemyssin bridg		
(a)	1.	(Reaction with ATP) breaks/allows binding of myosin to actin/ actinomyosin bridg	e,	
	2.	Provides energy to move myosin head;		
		1. Credit 'breaks' or 'allows' binding to actin (because cyclical)		
		2. Allow in context of 'power stroke' or 're-cocking'		
		(becausecyclical)		
		2. Ignore contraction on its own		
		2		
(b)	(i)	Any value between 68.5 and 69.49 (%);;		
		If get difference of 0.9 but calculation of percentage incorrect,		
		then award 1 mark;		
		2		
	(ii)	(Mutant mice)		

		 Unable to make phosphocreatine/ less phosphateavailable to make/recycle ATP; 	
		 So less energy/so less ATP available for contraction/fastmuscle fibres; 	
		1 and 2. Reject production/creation of energy once	
		2. Accept less energy for grip	
		2. Accept no energy/no ATP for contraction/fast muscle fibres	2
(c)	1.	(Heterozygous) have one dominant/normal allele (for creatine	
	0	production); (This) has the tensor dusting of an analytic production of	
	2.	(This) leads to production of enough/normal amount of creatine;	
		1. Accept has one allele/one copy of the gene for/that is making creatine	
			2 [8]
(a)	1.	Cut (DNA) at same (base) sequence / (recognition) sequence;	
		Accept: cut DNA at same place	
	2.	(So) get (fragments with gene) R / required gene. Accept: 'allele' for 'gene' / same gene	2
(b)	1.	Each has / they have a specific base sequence;	2
	2.	That is complementary (to allele r or R).	
		Accept description of 'complementary'	
			2
(c)	1. base	Fragments L from parent rr, because all longer fragments / 195 e pair fragments;	
		Ignore: references to fragments that move further / less, <u>require</u> identification of longer / shorter or 195 / 135 Accept: (homozygous) recessive	
	2.	Fragments N from parent RR, because all shorter fragments / 135 base pair fragments;	
		1 and 2 Accept: A3 for 195 and A4 for 135	
		2. Accept: (homozygous) dominant	
		 (M from) offspring heterozygous / Rr / have both 195 and 135 base pairfragments. 	
		Accept: have both bands / strips	
		Reject: <u>primer</u> longer / shorter	-
			3

(d) 1. (Cells in mitosis) chromosomes visible;

- 2. (So) can see which chromosome DNA probe attached to.
- (e) (i) 1. For comparison with resistant flies / other (two) experiments / groups;
 Ignore: compare results / data / no other factors
 - To see death rate (in non-resistant) / to see effect of insecticide in non-resistant / normal flies. Accept: 'pesticide' as 'insecticide' Accept to see that insecticide worked / to see effect of enzyme
 - (ii) (PM must be involved because)
 - 1. Few resistant flies die (without inhibitor);
 - 2. More inhibited flies die than resistant flies;
 - (PM) inhibited flies die faster (than resistant flies);
 - (Other factors must be involved because)
 - 4. Some resistant flies die;
 - 5. But (with inhibitor) still have greater resistance / die slower thannon-resistant flies.

Accept: (with inhibitor) die slower than non-resistant flies

4 max

2

2

[15] (a) (Recessive) allele is always expressed in females / females have one

6

(recessive) allele / males need two recessive alleles / males need to be homozygous recessive / males could have dominant and recessive alleles / be heterozygous / carriers;

Accept: Y chromosome does not carry a dominant allele. Other answers must be in context of allele not chromosome or gene.

1

i

i

(b) (i) 1. 1, (2) and 5;

Accept: for 1 mark that 1 and 2 have slow (feather production) but produce one offspring with rapid (feather production). Neutral: any reference to 3 being offspring of 1.

 1 must possess / pass on the recessive <u>allele</u> / 1 must be a carrier / heterozygous / if slow (feather production) is recessive all offspring of (1 and 2) would be slow (feather production) / if rapid (feather production) was dominant 1 would have rapid (feather production);

Reject: both parents must be carriers / possess the recessive allele. Reject: one of the parents (i.e. not specified) must be a carrier / heterozygous.

=

Х

f

Y

/

Х

f

Y

1

f

1

f

/

f

Y

;

 $7 = X^F X^f$ and $X^F X^F$ (either way round) /

or $X^{f}X^{F}$ and $X^{F}X^{F}$ (either way round) /

or X^FX^f, X^fX^F and X^FX^F(in any order);

Note: allow $5 = X^{t}Y, X^{t}Y$.

Accept: for both 5 and 7 a different letter than F. However, lower case and capital letter must correspond to that shown in the answer. For example accept $7 = X^R X^r$ and $X^R X^R$.

(iii) $X^F X^f$ and $X^f Y$ or $X^f X^F$ and $X^f Y$ or

 X^FX^f and $X^fY^{\scriptscriptstyle -}$ or X^fX^F and $X^fY^{\scriptscriptstyle -}$ / or

Ff and fY / or Ff and fY⁻ / or Ff

and f- /

or Ff and f;

Accept: a different letter than F. However, lower case and capital letter must correspond to that shown in the answer. Accept: each alternative either way round.

(c) Correct answer of 32 (%) = 3 marks;;; Accept: 0.32 = 2 marks

If incorrect answer, allow following points

- 1. $p^2 / q^2 = 4\% / 0.04 / \text{ or } p / q = 0.2;$
- Shows understanding that 2pq = heterozygotes / carriers;
 Accept: answer provided attempts to calculate 2pq. This can be shown mathematically i.e. 2 x two different numbers.

(a) Both alleles are expressed / shown (in the phenotype).

Accept: both alleles contribute (to the phenotype) Neutral: both alleles are dominant

(b) Only possess one allele / Y chromosome does not carry allele / gene / can't beheterozygous.

Accept: only possess one gene (for condition) Neutral: only 1 X chromosome (unqualified)

1

1

1

3 [9]

(c) 1. $X^{G}X^{B}$, $X^{B}X^{B}$, $X^{G}Y$, $X^{B}Y$;

Accept: equivalent genotypes where the Y chromosome is shown as a dash e.g. X^{G} -, or is omitted e.g. X^{G} Reject: GB, BB, GY, BY as this contravenes the rubric

- 2. Tortoiseshell female, black female, ginger male, black male;
- 3. (Ratio) 1:1:1:1

2 and 3. Award one mark for following phenotypes tortoiseshell, black, (black) ginger in any order <u>with</u> ratio of 1:2:1 in any order.

			Allow one mark for answers in which mark points 1, 2 and 3 are not awarded but show parents with correct genotypes i.e. $X^G X^B$ and $X^B Y$ or gametes as X^G , X^B and X^B , Y 3. Neutral: percentages and fractions 3. Accept: equivalent ratios e.g. for 1:1:1:1 allow 0.25 : 0.25 : 0.25 : 0.25	3
	(d)	(i)	Correct answer of $0.9 = 2$ marks;	
			Incorrect answer but shows $q^2 = 0.81 = one mark$.	
			Note: $0.9\% = one mark$	
				2
		(ii)	Homozygous dominant increases and homozygous recessive decreases.	1
		[8	B] (a) 1. Expression / appearance / characteristic due to genetic constitution / g	-
8	(b)	(i)	 allele(s); Accept: named characteristic Accept: homozygous / heterozygous / genes / DNA Neutral: chromosomes (Expression / appearance / characteristic) due to environment; 3 and 4 and 9 / 11 / affected offspring; 	2
			 Accept: 9 / 11 and their parents Accept: unaffected parents have affected children Both 3 and 4 are carriers / heterozygous; Accept: if 3 and 4 are unaffected all their children will be unaffected OR If dominant at least one of 3 and 4 would be affected;	2
		(ii)	 11 is affected, 3 is not; Accept: 3 / unaffected father / parents produce an affected daughter Accept: 3 and 4 would only produce unaffected females 3 / father of 11 does not have a recessive allele on his X chromosome / X^t; Answers must be in context of alleles 	

OR

(If on X) 11 / affected female would not receive the recessive allele on X chromosome / X^t from 3 / father;

Reject: recessive / dominant chromosomes

OR

(If on X) 3 / father (of 11) would pass on the dominant allele on his X chromosome / X^{T} ;

(c) (i) Answer in range of 5.8 – 6.2% = 3 marks;;; Answers in range of 0.058 - 0.062 = 2 marks

If incorrect answer, then 2 max of following points

- 1. $q^2 / p^2 / tt = 0.001$ or 1 divided by 1000;
- 2. p/q/T = 0.968 0.97;
- 3. Understanding that heterozygous = 2pq;
 3. This can be shown mathematically ie 2 × two different numbers
 2. Accord. encoded attempts to acloud to 2n
 - 3. Accept: answer provided attempts to calculate 2pq
- (ii) Affected individuals (usually) do not reproduce / die during childhood / do not pass on allele / genetic screening;

[10] (a) (i) 1. No overall pattern / pattern (of right or left most

common) is not the same for all islands;

9

Allow expression in other ways e.g. three islands show left on top is more common

- 2. For (B) C and E there is little difference;
- Large differences on A and D and opposite ways (to each other); Need both aspects but allow other expressions of 'opposite ways'

2 max

3 max

1

- (ii) 1. Can record all individuals on (small) islands;
 - 2. (So) no / less sampling error;
 - 3. (Maybe) different rates of mutation / different selection pressures /different environmental conditions;
 - 4. Inbreeding / breeding with close relatives (more likely);

			5. (Little) gene flow / (more chance of) genetic drift; Accept reference to either of these ideas for this point	er
				2 max
	(b)	1.	If R is recessive, R × R parents cannot produce L offspring; Accept use of genetic diagrams to illustrate points 1 and 2	
		2.	If L is recessive, L × L parents cannot produce R offspring; <i>Accept right arm on top as R etc.</i>	
		3.	R × R and L × L parents produce both types of offspring; <i>Need</i> reference to two parent crosses for this mark	
				3
	(c)	Botl	h L and R in a set of twins / (some) twins show different arm-folding;	1
			[8]	(a) <u>2.84</u> :1;
10				
_			Accept '2.84 to 1' or (just) 2.84	
			Do not accept 1:2.84 or 142:50	1
	(b)	1.	Some embarrassed / some not willing to show tongue / cannot tell;	
	(0)			
		2.	Could not decide whether thumb was straight or not / thumb bending isjudgeme / subjective;	ental
				2
	(c)	1. calc	(No) - should be 92.9% / should be calculated from 182 out of 196 / should not culated from 182 out of 200;	De
			Allow either no or yes approach but no mark awarded for no or yes on its own	
		2.	(Yes) – assumes 4 out of 200 use either hand; Accept ambidextrous	
		3.	(But) sample may not be representative;	
			This could be expressed in other ways e.g. only based on one part of the country / might not be the same in different parts of the UK / might not be representative of UK	
		4.	Small sample size / only sampled 200;	0
			[5] (a) 1. Large number of eggs / offspring / flies (therefore) improves reliabi	2 max lity / can use
44				
			statistical tests / are representative / large <u>sample</u> (size) / reduces <u>sampling</u> err Each mark point requires a feature linked in mark scheme (by	or;
			therefore) to an explanation	

therefore) to an explanation

Do not accept a large number of eggs produces a large number of flies unless the term <u>sample</u> is used Ignore references to accuracy or precision

- Small size / (breed) in small flasks / simple nutrient medium (therefore) reducescosts / easily kept / stored; Accept small size so can be kept in small flasks
- 3. Size / markings / phenotypes (therefore) males / females easy to identify;*Answers must relate to size, markings or use the term phenotype*
- 4. Short generation time / 7 14 days / develop quickly / reproduce quickly (therefore) results obtained quickly / saves times / many generations;

2 max

(b) (i) 1. $X^{R}X^{R}$ and $X^{r}Y$;

All marking points are completely independent. Allow crosses from the following parents for a possible three marks: $X^{R}X^{R}$ and $X^{r}X^{R}X^{R}$ and $X^{r}Y$;

RR and rY / rY RR and r- or RR and r

- 2. X^{R} and X^{R} plus X ^r and Y;
- 3. $X^{R}X^{r}$ and $X^{R}Y$;

OR

1. $X^{R}X^{r}$ and $X^{r}Y$;

OR

 $X^{R}X^{r}$ and X^{r} -

 $X^{R}X^{r}$ and $X^{r}Y$;

2. X^{R} and X^{r} plus X^{r} and Y;

Rr and rY / rY⁻

Rr and r⁻ or Rr and r Accept different symbols e.g. W and w 2. Accept gametes in a punnet square

- 3. $X^{R}X^{r}$ and $X^{R}Y$;
- (ii) Fertilisation is random / fusion of gametes is random / small / not large population / sample / selection advantage / disadvantage / lethal alleles;

Mutation = neutral Random mating = neutral Accept fertilisation / fusion of gametes is due to chance

- (c) 1. Males have one <u>allele;</u> Answers should be in context of alleles rather than chromosomes
 - 2. Females need two recessive alleles / must be homozygous recessive / could have dominant and recessive alleles / could be heterozygous / carriers;

[8] (a) Is always expressed / shown (in the phenotype);

12

Reject 'is always present' without further qualification

(b) $C^{B}C^{B}$, $C^{B}C^{P}$ and $C^{B}C^{Y}$;

All three are required for the mark

<u>Or</u>

 $C^{B}C^{B}$, $C^{P}C^{B}$ and $C^{Y}C^{B}$;

Accept $C^{B}C^{B}$, $C^{B}C^{P}$, $C^{B}C^{Y}$, $C^{Y}C^{B}$ and $C^{P}C^{B}$ Accept BB, BP and BY <u>or</u> BB, BP, BY, YB and PB

1

1

2

1

(c) 1. Two genotypes (as parents) shown as $C^P C^Y$

Award **one mark maximum** for candidates who have misread the question and complete a correct genetic cross between a pink snail, $C^{P}C^{Y}$ and a yellow snail, $C^{Y}C^{Y}$ to give pink and yellow offspring

<u>Or</u>

Two sets of gametes shown as C^{P} and C^{Y} ;

- 2. Genotypes of offspring shown as $C^P C^Y$, $C^P C^P$ and $C^Y C^Y$;
- 3. Above genotypes of offspring correctly linked to phenotypes i.e. pink andyellow; Accept ratio (or equivalent) of 3 pink: 1 yellow for mark point 3
- (d) 1. Correct answer of 42% = 3 marks
 Answer of 0.42 = 2 marks
 Award one mark maximum for answer of

49.9 / 49.98 / 50% or 0.49 / 0.5

- 2. q² = 0.49 / 49% **OR** q = 0.7 / 70% Award **one mark maximum** for answer of 40.8 / 41% or 0.41
- Shows understanding that 2pq = heterozygotes / carriers / shows answer isderived from 2pq;

Accept: $b^2 = 0.49 / 49\%$ or b = 0.7 / 70% for mark point 2

3

(a) (i) 1. Animal 2 / 5 has hair but offspring do not;

Accept parents as alternative to animals 2 and 5

So 2 / 5 parents must be heterozygous / carriers;
1 + 3: Allow reference to children / offspring for animals 7 + 8

OR

- 3. 4 / 7 / 8 are hairless but parents have hair; *Ignore reference to individuals 1 and* 6
- 4. So 2 / 5 must be heterozygous / carriers;

2

1

(ii) Hairless males have fathers with hair / 4 is hairless but 1 is hairy / 7 and / or 8 are hairless but 6 is hairy / only males are hairless;

Ignore references to other individuals

Ignore reference to genotypes

Allow credit for candidate who states that evidence is not conclusive / pedigree possible with autosomal character;

(b) 1. Parental genotypes

 $X^{H}X^{h}$ and $X^{H}Y$ Gametes $X^{H}X^{h}X^{H}Y$;

Accept any letter for gene but capital letter must represent dominant allele.

Both parental genotypes and gametes must be correct

 Genotypes of offspringX^HX^H, X^HY, X^HX^h, X^hY;

Allow for offspring genotypes correctly derived from <u>gametes</u> given by candidate;

		3.	Phenotypes of offspringfemale with hair male with hair male hairless; <i>Allow phenotypes correctly derived from offspring genotype</i> <i>Allow</i> $H \equiv X^{H}$, $h \equiv X^{h}$		
		4.	0.25 / ¼ / 1 in 4 / 25 % Ignore 1:3 in context of correct probability Reject 1:4	4	[7]
14	(a)	(i)	1. Parents are heterozygous;		
			Accept carriers / carries white allele		
			2. Kittens receive white allele from parents / black cat;	1 max	
		(ii)	1:1; Answer must be expressed as a ratio that could be reduced to 1 : 1	1	
	(b)	(i)	Black, Chocolate, Black; <i>All three correct for the mark</i>	1	
		(ii)	Parental phenotypes Chocolate male Black female	1	
			1. Parental genotypes bb ⁱ Bb ⁱ ;		
			Both genotypes needed for the mark.	1	
			2. Parental gametes b b ⁱ B b ⁱ ;		
			Allow credit if gametes are correctly derived from candidate's incorrect parental genotypes.	1	
			3. Offspring genotypes Bb, Bb ⁱ bb ⁱ b ⁱ b ⁱ ;		
			Genotype(s) must be with correct phenotype.		
			Allow credit if symbols other than B / b / b ⁱ have been used correctly. Ignore genetic diagrams unless clearly annotated.	1	

			Offs	pring phenotypes	Black	Chocolate	cinnamon;		
		(iii)	1.	Offspring ratios are a pr	obability / not f	ixed / arise by	chance /		
			2.	gametes may not be pr	oduced in equa	al numbers /			
			3.	fertilisation / fusion of g	ametes is rand	om /			
	4. small sample;								
		<i></i> 、		-	<i></i>			1	
		(iv)	1.	Possible if parents hom	ozygous / bb;				
			2.	Don't know genotype o orheterozygous / choco			t could be homo-		
			3.	Two chocolate cats cou	ıld give cinnam	on kittens;		2	
								2 max	[9
] (a)	(i)	On	ly expressed / shown (in	the phenotype) when homoz	ygous / two (alleles) a	re	
15 p	resen	t / whe	en no	dominant allele / is not e	expressed whe	n heterozygou	s;		
								1	
		(ii)	Both	alleles are expressed / s	shown (in the p	henotype);			
				Allow both alleles contr	ibute (to the pl	ienotype).		1	
	(b)	(i)	Evid	<u>ence</u> (not a mark)				-	
	()	()		d 4 / two Rhesus positive	es produce Rhe	esus negative	child / children / 7 / 9:		
				anation (not a mark)			,		
						• • • • • • • •			
			Rhe	<u>Rhesus positives / 3 an</u> sus positive was recessiv tive / recessive;		. ,			
			-	Do not negate mark if o	andidate refer	s to gene rathe	er than allele.		
				Answers including corre		ct evidence = 2	zero marks		
								2	
		(ii)	<u>Evid</u>	<u>ence</u> (not a mark)					
			3 wc	ould not be / is Rhesus po	ositive / would	be Rhesus ne	gative;		
			<u>Expl</u>	anation (not a mark)					

3 would receive Rhesus negative (allele) on X (chromosome) from mother / 3 could <u>not</u> receive Rhesus positive (allele) from mother / 3 would not receive Rhesus positive (allele) / X (chromosome) from father / 1 / 3 will receive Y

(chromosome) from father / 1;

OR

Evidence (not a mark)

9 would be Rhesus positive / would not be / is Rhesus negative / 8 and 9 / all daughters of 3 and 4 would be Rhesus positive;

Explanation (not a mark)

As 9 would receive X chromosome / dominant allele from father / 3;

Do not negate mark if candidate refers to gene rather than allele. One mark for evidence and one mark for explanation linked to this evidence.

Any reference to allele being on Y chromosome negates mark for explanation.

2

(c) Correct answer of 48(%) = 3 marks;;;

 $q^2 / p^2 = 16\% / 0.16 / p / q = 0.4;$

Shows that 2pq = heterozygotes / carriers;

Final answer of 0.48 = 2 marks Allow mark for identifying heterozygotes if candidate multiplies incorrect p and q values by 2.

] (a) Cannot make (active) enzyme A (which converts precursor to linamarin) / cannot make

16 linamarin;

(b) (i) **AL** + **AI** + **aL** + **aI**;

 Meiosis separates alleles / homologous chromosomes / pairs of chromosomes; Independent assortment / means either of A / a can go with either of L / I;

> Accept "random segregation" but cancel if reference to crossingover

(c) From parental genotypes: AaLI × AaLI (no mark) Note: If wrong parental genotypes / wrong gametes: ALLOW correct derivation of offspring genotypes = 1 max

Correct derivation of offspring genotypes; max 2 marks if error in Punnett square

[9

3

1

1

	AL	AI	aL	al
AL	AALL	AALI	AaLL	AaLl
AI	AALI	AAII	AaLl	Aall
aL	AaLL	AaLl	aaLL	aaLl
al	AaLl	Aall	aaLl	aall

Correct identification of offspring genotypes with at least one **A** and two **I** alleles (= grey cells in above table); Correct proportion: 3 / 16 / 3:13 / 18.75% ;

- 3 (d) There was no (significant) difference in damage between cyanogenic (i) andacyanogenic / being cyanogenic has no effect; 1 (ii) The difference (from expected / from chance variation) is significant / difference / results not just due to chance; Reject null hypothesis; Being cyanogenic does help protect from slug damage; 3 (e) High slug population: Find <u>only</u> cyanogenic plants / only cyanogenic plants survive; 1. 2. (Cyanide release) limits / stops feeding by slugs / slugs killed; Accept: converse argument re. acyanogenic plants Low slug population: 3. Find both types of plant; 4. Less selection pressure on plants from slugs / no selective advantage / noselection / described: Homologous chromosomes pair up / bivalents form; [15] (a) 1. 2. Crossing over / chiasmata form; 3. Produces new combination of alleles; Chromosomes separate; 4. 5. At random; 6. Produces varying combinations of chromosomes / genes / alleles (not twice); 7. Chromatids separated at meiosis II / later; Independent assortment / random segregation = marking points 4 and 5 6 max
- (b) (i) Parental phenotypes

17

Agouti

White

Parental genotypes	Bb	Aa	bbaa	;
Gamete genotypes	BA Ba	bA ba	ba	;
Offspring genotypes	BbAa	Bbaa	bbAa bbaa	;
Offspring phenotype Phenotypes must m	Agouti atch genoty	Black pes	White White	;
Allow marking points 2 and 3 if correctly derived from wrong parental genotypes				

(ii)

Colour of offspring	Observed (O)	Expected (E)	(O-E)	(O-E) ²	(0-E) ² E
Agouti	34	30	4	16	0.53
Black	35	30	5	25	0.83
White	51	60	9	81	1.35
			<u>(</u> Ω Σ	$\frac{(2-E)^2}{E} = 2.71$	or 2.72

;;

2

 $(\chi^2 \text{ correct} = 2 \text{ marks})$

 $((O-E)^2$ all correct = 1 mark)

p = 0.05;

2 degrees of freedom;

Differences due to chance / no significant difference as χ^2 less than / to left of critical value OR Not due to chance / difference is significant as χ^2 greater than to right of critical value;

(as appropriate for candidates χ^2)

[15]

3

4

(a) <u>Table completed as below</u>:

Kingdom	Animalia / Animals	
Phylum	Chordata	
Class	Mammalia	
Order	Rodentia	
Family	Caviidae	
Genus	Cavia	Column 1 correct;
Species	porcellus	Column 2 correct;

(b) Mutation occurs;

Correct e.g. of isolating mechanism e.g. temporal – different breeding seasons / feeding times / ecological / behavioural – different courtship displays / different niches / habitats / feeding areas / mechanical – mismatch of reproductive parts / gamete incompatibility – sperm killed in female's reproductive tract / hybrid inviability / hybrid infertility; *Ignore references to "genetic isolation" or "reproductive isolation"*

Different selection pressures operate / changes in allele frequency / divergence of gene pools;

Using candidate's symbols for alleles –
 e.g. B = black, b = brown, S = short, s = long:

Parental genotypes correct:	Male A	Female B
	SSBb	SsBB;

Gametes correctly <u>derived</u> from candidate's parental genotypes: SB Sb SB sB;

offspring genotypes correctly <u>derived</u> from candidate's suggested gametes – accept Punnett square or line diagram;

offspring genotypes <u>correct</u>: SSBB SsBB SSBb SsBb; If monohybrid:cross > 0 marks

(d) There is no (significant) difference between observed and expected results / any differenceis due to chance;

4

1

19 p	parenta	al gen	otypes correct: X^RX^r AND X^RY ; gametes correct for						
	candidate's parental genotypes; offspring genotypes correct and								
	colourblind male identified as X'Y / correct genotypes derived from								
	cand's gametes and identify $X'Y$; correct probability = $\frac{1}{4} / 0.25 /$								
	25% / 1 in 4 / 1:3 ;								
				[4					
] (a)	(va	riation in) temperature will affect the solubility of oxygen / rate of respiration / use of						
20									
	oxygen by cells / diffusion / gas exchange; <i>to</i>								
		gain	credit point made must concern oxygen						
	(h)	(;)	there is no difference between the partial pressure of evugan in the two groups (the						
	(b)	(i)	there is no difference between the partial pressure of oxygen in the two groups / the partial pressure of oxygen is the same in each group;						
			1						
		(ii)	results may have been due to chance and statistical test allows us to determine						
			the probability of this / of the difference between results being significant;						
			enables acceptance or rejection of null hypothesis; The key points here are chance and probability used in the correct context.						
			The key points here are chance and probability used in the confect context.						
	(C)	A ;							
	because partial pressure of oxygen only reduced when zinc in water / in Y / because when								
		injec	ted zinc / in X has no effect on partial pressure of oxygen in blood;						
			2						
	(d) less oxygen transport to cells / in fish / in blood;anaerobic respiration;								
	lactic acid produced / less carbon dioxide removed (from gills);								
	more H ; 3 max								
	(e) (i) copper; calculation based on comparing concentration in woodlice with that in leaves; accept any suitable method here, giving marks for the method and explanation. For								
		exar	mple, calculating ratio of concentration in woodlice to concentration in leaves.						
		(::)	not cheerbod from gut / necessor out in facence / agested / urine / averated						
		(ii)	not absorbed from gut / passes out in faeces / egested / urine / excreted;						
		(iii)	woodlice eat large amount of leaves;copper stored / accumulates in body;						
		()	2						
	(f)	(i)	mutation;						
	. /	.,	1						
		(ii)	(as a component of) nucleic acids / DNA / RNA / nucleotides;phospholipids; ATP / ADP;						

	 (iii) arsenic-tolerant plants would not be able to take up phosphates / take up a littlephosphate; since likely to involve same mechanism / same carrier / protein; (process of) growth would be poorer than non-tolerant plants; 						
	[20] (a) Parents genotypes Aabb	3 aaBb ;					
21							
	Gametes formed Ab ab aB ab ;						
	if parental genotypes wrong allow correctly derived gametes only						
	Offspring genotypes AaBb Aabb aaBb aabb						
	and						
	Offspring phenotypes 1 Walnut; 1 Pea: 1 Rose: 1 single;						
	Just one mark for offspring genotypes and phenotypes If parents not diploid, no marks gained						
		3					
(b	 Correct answer 0.6, however derived, scores 2 marks Wrong answer, but evidence of correct working 						
	(e.g. p / q = 0.36) scores 1 mark						
	(e.g. p/q = 0.50) scores i mark	2					
		[5]					
-	 (a) (i) Two, as white blood cells are diploid cells / alleles are present on each chromosome 2 of an homologous pair / one maternal and one paternal; 						
	n nonologous pair / one maternal and one paternal,	1					
	(ii) A and B						
	(reject I ^A and I ^{B)}						
		1					
(b	 1 in 8 / 1 / 8 / 12.5% / 1:7 / 0.125; (<i>Reject 1:8</i>) parents I^AI^O and I^BI^O; give 1:3 / ¼ / 1 in 4 / 25% probability of 						
	blood group A and half will be male;						
	(accept 2^{nd} and 3^{rd} points from a suitable genetic diagram)	3					
	[5] (a) (i) where a change triggers a response which reduces the effect						
23		1					
	(ii) e.g. sweating, breathing, defaecating, other valid example;						
	(reject respiration evaporation not acceptable as a 2 nd mark if						
	sweating or breathing given)	2 may					

2 max

(b)	(i)	pituitary;		
		(ignore anterior pituitary)	1	
	(ii)	 ADH causes vesicles containing aquaporins / aquaporins to be insertedinto membrane / collecting duct wall / plasma; water enters cell through aquaporins; by osmosis / diffusion / down a <u>water potential</u> gradient; (from cell) to capillary; via interstitial fluid; 	1	
			4 max	
(c)	(i)	excessive urination / drinking / diluted urine / thirst;	1	
	(ii)	because males only have one X chromosome / do not have Y chromosome; a single copy of the recessive allele will be expressed;		
	(iii)	recessive alleles can be carried by individuals without showing effects /dominant allele always expressed; organism that are carriers <u>more likely</u> to reproduce / affected organism <u>less likely</u> to reproduce; therefore recessive alleles are <u>more likely</u> to be passed on / dominant alleles <u>less likely</u> to be passed on;		
			3	

[15]