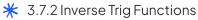


3.7 Inverse & Reciprocal Trig Functions

Contents

* 3.7.1 Reciprocal Trig Functions



Reserved

3.7.1 Reciprocal Trig Functions

Reciprocal Trig Functions

What are the reciprocal trig functions?

- There are three reciprocal trig functions that each correspond to either sin, cos or tan
 - Secant (sec x)

$$\sec x = \frac{1}{\cos x}$$

Cosecant (cosec x)

$$\cos \cot x = \frac{1}{\sin x}$$

Cotangent (cot x)

$$\cot x = \frac{1}{\tan x}$$

- The identities above for sec x and cosec x are given in the formula booklet
- The identity for cot x is **not given**, you will need to remember it
- A good way to remember which function is which is to look at the **third** letter in each of the reciprocal trig functions
 - cotxislovertanxetc
- Each of the reciprocal trig functions are undefined for certain values of x
 - $\sec x$ is undefined for values of x for which $\cos x = 0$
 - cosec x is undefined for values of x for which $\sin x = 0$
 - $\cot x$ is undefined for values of x for which $\tan x = 0$
 - When $\tan x$ is undefined, $\cot x = 0$
- Rearranging the identity $\tan x = \frac{\sin x}{\cos x}$ gives

$$\cot x = \frac{\cos x}{\sin x}$$

- This is not in the formula booklet but is easily derived
- Be careful not to confuse the reciprocal trig functions with the inverse trig functions

$$\sin^{-1} x \neq \frac{1}{\sin x}$$

What do the graphs of the reciprocal trig functions look like?

- The graph of $y = \sec x$ has the following properties:
 - The y-axis is a line of symmetry
 - It has a **period** of **360°** (2π radians)
 - There are vertical asymptotes wherever cos x = 0
 - If drawing the graph without the help of a GDC it is a good idea to sketch cos x first and draw these in
- The domain is all x except odd multiples of 90° (90°, -90°, 270°, -270°, etc.)
 - in radians this is all x except odd multiples of $\pi/2$ ($\pi/2$, $-\pi/2$, $3\pi/2$, $-3\pi/2$, etc.)
- The range is $y \le -1$ or $y \ge 1$

Vieths Reserved

Worked example

Without the use of a calculator, find the values of

sec
$$\frac{\pi}{6}$$

Sec
$$\left(\frac{\pi}{6}\right) = \frac{1}{\cos\left(\frac{\pi}{6}\right)}$$
 the third letter is c so sec is related to cos $= \frac{1}{\sqrt{3}}$ value you should know

$$Sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt{3}}$$

b) cot 45°

cot
$$45^{\circ} = \frac{1}{\tan 45^{\circ}}$$

the third letter

is \pm so \cot is related

to \pm an

$$= \frac{1}{\cot 45^{\circ}} = \cot 45^{\circ}$$

value you should know.

Pythagorean Identities

What are the Pythagorean Identities?

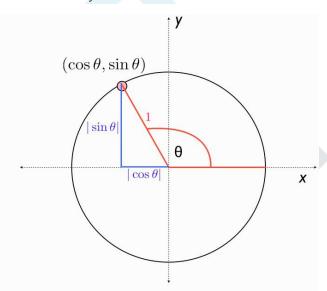
- Aside from the Pythagorean identity $\sin^2 x + \cos^2 x = 1$ there are two further Pythagorean identities you will need to learn
 - $1 + \tan^2 \theta = \sec^2 \theta$
 - $1 + \cot^2 \theta = \csc^2 \theta$
 - Both can be found in the formula booklet
- Both of these identities can be derived from $\sin^2 x + \cos^2 x = 1$
 - To derive the identity for $\sec^2 x$ divide $\sin^2 x + \cos^2 x = 1$ by $\cos^2 x$
 - To derive the identity for $\csc^2 x$ divide $\sin^2 x + \cos^2 x = 1$ by $\sin^2 x$

$$a^2+b^2=c^2$$
 The Pythagorean theorem; always true for a right

$$(|\sin\theta|)^2 + (|\cos\theta|)^2 = 1^2$$
 by substitution

$$\sin^2\theta + \cos^2\theta = 1$$

We can derive two other identities from this identity



7CACA

Worked example

Solve the equation 9 sec $\theta - 11 = 3 \tan \theta$ in the interval $0 \le \theta \le 2\pi$.

 θ = 0.588, 2.82, 3.73, 5.96

9sec²
$$\theta$$
 - II = 3tan θ , $0 \le \theta \le 2\pi$

consider how this
could be changed to use $tan^2 + 1 = sec^2$

Range is given in terms of π
so work in radians

$$(9sec^2\theta - 9) - 2 = 3tan\theta$$

$$9(sec^2\theta - 1) - 2 = 3tan\theta$$
9tan² θ - 3tan θ - 2 = 0

$$(3tan\theta - 2)(3tan\theta + 1) = 0$$

$$tan\theta = \frac{2}{3} \Rightarrow \theta = 0.5880 \dots$$
or $\theta = \pi + 0.5880 \dots = 3.729 \dots$
or $tan\theta = -\frac{1}{3} \Rightarrow \theta = -0.3217 \dots$
or $tan\theta = -\frac{1}{3} \Rightarrow \theta = -0.3217 \dots = 2.819 \dots$

For more help, please visit www.exampaperspractice.co.uk

5.f.)

3.7.2 Inverse Trig Functions

Inverse Trig Functions

What are the inverse trig functions?

- The functions arcsin, arccos and arctan are the inverse functions of sin, cos and tan respectively when their domains are restricted
 - $\sin(\arcsin x) = x \text{ for } -1 \le x \le 1$
 - $\cos(\arccos x) = x \text{ for } -1 \le x \le 1$
 - tan(arctan x) = x for all x
- You will have seen and used the inverse trig operations many times already
 - Arcsin is the operation sin⁻¹
 - Arccos is the operation cos⁻¹
 - Arctan is the operation tan-1
- The domains of sin, cos, and tan must first be restricted to make them one-to-one functions
 - A function can only have an inverse if it is a one-to-one function
- The domain of $\sin x$ is restricted to $-\pi/2 \le x \le \pi/2$ ($-90^{\circ} \le x \le 90^{\circ}$)
- The domain of $\cos x$ is restricted to $0 \le x \le \pi$ ($0^{\circ} \le x \le 180^{\circ}$)
- The domain of tan x is restricted to $-\pi/2 < x < \pi/2$ ($-90^{\circ} < x < 90^{\circ}$)
- Be aware that $\sin^{-1}x$, $\cos^{-1}x$, and $\tan^{-1}x$ are **not** the same as the reciprocal trig functions
 - They are used to solve trig equations such as $\sin x = 0.5$ for all values of x
 - $\arcsin x$ is the same as $\sin^{-1} x$ but not the same as $(\sin x)^{-1}$

What do the graphs of the inverse trig functions look like?

- The graphs of **arcsin**, **arccos** and **arctan** are the **reflections** of the graphs of **sin**, **cos** and **tan** (after their domains have been restricted) in the line *y* = *x*
 - The **domains** of $\arcsin x$ and $\arccos x$ are both $-1 \le x \le 1$
 - The **range** of arcsin x is $-\pi/2 \le y \le \pi/2$

How are the inverse trig functions used?

- The functions **arcsin**, **arccos** and **arctan** are used to evaluate trigonometric equations such as $\sin x = 0.5$
 - If $\sin x = 0.5$ then $\arcsin 0.5 = x$ for values of x between $-\pi/2 \le x \le \pi/2$
 - You can then use symmetries of the trig function to find solutions over other intervals
- The inverse trig functions are also used to help evaluate algebraic expressions
 - From $\sin(\arcsin x) = x$ we can also say that $\sin^n(\arcsin x) = x^n$ for $-1 \le x \le 1$
 - If using an inverse trig function to evaluate an algebraic expression then remember to consider the domain and range of the function
 - $\arcsin(\sin x) = x$ only for $-\pi/2 \le x \le \pi/2$
 - arccos(cos x) = x only for $0 \le x \le \pi$
 - $\arctan(\tan x) = x$ only for $-\pi/2 < x < \pi/2$
 - The symmetries of the trig functions can be used when values lie outside of the domain or range
 - Using $sin(x) = sin(\pi x)$ you get $arcsin(sin(2\pi/3)) = arcsin(sin(\pi/3)) = \pi/3$

Worked example

Given that X satisfies the equation $\arccos x = k$ where $\frac{\pi}{2} < k < \pi$, state the range of possible values of X.

If
$$\arccos x = k$$
, then $x = \cos k$ $(\cos(\arccos x) = x)$
 $y = \cos k$

For $\frac{\pi}{2} < k < \pi$, $-1 < \cos k < 0$

-1< x < 0

Pients Reserved