EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

3.7 Inverse \& Reciprocal Trig Functions

AA HL

3.7.1 Reciprocal Trig Functions

Reciprocal Trig Functions

What are the reciprocal trig functions?

- There are three reciprocal trig functions that each correspond to eithersin, cos ortan
- Secant $(\sec x)$
- $\sec x=\frac{1}{\cos x}$
- Cosecant $(\operatorname{cosec} x)$
- $\operatorname{cosec} x=\frac{1}{\sin x}$
- Cotangent $(\cot x)$
- $\cot x=\frac{1}{\tan x}$
- The identities above forsec x and $\operatorname{cosec} x$ are given in the formula booklet
- The identity forcot x is not given, you will need to remember it
- A good wayto remember which function is which is to look at the third letter in each of the reciprocal trig functions
- $\cot x$ is lovertanxetc
- Each of the reciprocal trig functions are und efined forcertain values of x
- $\sec x$ is undefined forvalues of x for which $\cos x=0$
- $\operatorname{cosec} x$ is undefined forvalues of x for which $\sin x=0$
- $\cot x$ is undefined forvalues of x forwhich $\tan x=0$
- When $\tan x$ is undefined, $\cot x=0$
- Rearranging the id entity $\tan x=\frac{\sin x}{\cos x}$ gives
- $\cot x=\frac{\cos x}{\sin x}$
- This is not in the formula booklet but is easily derived
- Be careful not to confuse the reciprocal trig functions with the inverse trig functions
- $\sin ^{-1} x \neq \frac{1}{\sin x}$

What do the graphs of the reciprocal trig functions look like?

- The graph of $\boldsymbol{y}=\mathbf{s e c} \boldsymbol{x}$ has the following properties:
- They-axis is a line of symmetry
- It has a period of 360° (2π radians)
- There are vertical asymptotes wherevercos $x=0$
- If drawing the graph without the help of a GDC it is a good ideato sketch cos x first and draw these in
- The domain is all xexcept odd multiples of $90^{\circ}\left(90^{\circ},-90^{\circ}, 270^{\circ},-270^{\circ}\right.$, etc. $)$
- in radians this is all x except odd multiples of $\pi / 2(\pi / 2,-\pi / 2,3 \pi / 2,-3 \pi / 2$, etc.)
- The range is $y \leq-1$ or $y \geq 1$

- The graph of $\boldsymbol{y}=\boldsymbol{\operatorname { c o s e c }} \boldsymbol{x}$ has the following properties:
- It has a period of 360° (2π radians)
- There are vertic al asymptotes wherever $\sin \boldsymbol{x}=\mathbf{0}$
- If drawing the graph it is a good idea to sketch $\sin x$ first and draw these in
- The do main is all x except multiples of $180^{\circ}\left(0^{\circ}, 180^{\circ},-180^{\circ}, 360^{\circ},-360^{\circ}\right.$, etc.)
- in radians this is all xexcept multiples of $\pi(0, \pi,-\pi, 2 \pi,-2 \pi$, etc.)
- The range is $y \leq-1$ or $y \geq 1$

- The graph of $\boldsymbol{y}=\boldsymbol{\operatorname { c o t }} \boldsymbol{x}$ has the following properties
- It has a perio d of 180° or $\boldsymbol{\pi}$ radians
- There are vertical asymptotes wherever $\tan \boldsymbol{x}=0$
- The domain is all xexcept multiples of $180^{\circ}\left(0^{\circ}, 180^{\circ},-180^{\circ}, 360^{\circ},-360^{\circ}\right.$, etc. $)$
- In radians this is all xexcept multiples of $\pi(0, \pi,-\pi, 2 \pi,-2 \pi$, etc.)
- The range is $y \in \mathbb{R}$ (i.e. cot can take anyreal number value)

- Exam Tip

To solve equations with the reciprocal trig functions, convert them into the regular trig functions and solve in the usual way

- Don't forget that bothtan and cot can be written interms of sin and cos
- You will sometimes see cscinstead of cosec forcosecant

Worked example

Without the use of a calculator, find the values of
a)
$\sec \frac{\pi}{6}$
the third letter $\sec \left(\frac{\pi}{6}\right)=\frac{1}{\cos \left(\frac{\pi}{6}\right)}$
is \subseteq so sec is related to $\cos \cos \left(\frac{\pi}{6}\right)$ is an exact

$$
\sec \left(\frac{\pi}{6}\right)=\frac{2}{\sqrt{3}}
$$

b) $\quad \cot 45^{\circ}$

the third letter
is t so cot is related $\tan 45^{\circ}$ is an exact to \tan

$$
\cot 45^{\circ}=1
$$

Pythagorean Identities

What are the Pythagorean Identities?

- Aside from the Pythago rean identity $\sin ^{2} x+\cos ^{2} x=1$ there are two further Pythago rean identities you will need to learn
- $1+\tan ^{2} \theta=\sec ^{2} \theta$
- $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$
- Both can be found in the formula booklet
- Both of these id entities can be derived from $\sin ^{2} x+\cos ^{2} x=1$
- To derive the identityfor $\sec ^{2} x$ divide $\sin ^{2} x+\cos ^{2} x=1$ by $\cos ^{2} x$
- To derive the identity for $\operatorname{cosec}^{2} x$ divide $\sin ^{2} x+\cos ^{2} x=1 b y \sin ^{2} x$

$$
\tan ^{2} x+1=\sec ^{2} x \quad 1+\cot ^{2} x=\operatorname{cosec}^{2} x
$$

$\tan ^{2} x+1=\sec ^{2} x$

© 2024 Exam Papers Practice

- Exam Tip

All the Pythagorean id entities can be found in the Topic 3: Geometry and Trigo nometry section of the formula booklet

Worked example

Solve the equation $9 \sec ^{2} \theta-11=3 \tan \theta$ in the interval $0 \leq \theta \leq 2 \pi$.

$$
\begin{aligned}
& 9 \sec ^{2} \theta-11=3 \tan \theta, 0 \leqslant \theta \leqslant 2 \pi \\
& \text { consider how this } \\
& \text { could be changed } \\
& \text { to use } \tan ^{2}+1=\sec ^{2} \\
& \left(9 \sec ^{2} \theta-9\right)-2=3 \tan \theta \\
& 9\left(\sec ^{2} \theta-1\right)-2=3 \tan \theta \\
& 9 \tan ^{2} \theta-3 \tan \theta-2=0 \\
& (3 \tan \theta-2)(3 \tan \theta+1)=0 \\
& \tan \theta=\frac{2}{3} \Rightarrow \theta=0.5880 \\
& \text { or } \theta=\pi+0.5880 \ldots 3.729 \\
& \text { or } \tan \theta=-\frac{1}{3} \Rightarrow \theta=-0.3217 \ldots \\
& \text { or } \theta=\pi+(-0.3217 \ldots)=2.819 \ldots \\
& \text { and } \theta=2 \pi+(-0.3217 \ldots)=5.961 \text {. } \\
& \theta=0.588,2.82,3.73,5.96 \text { (3s.f.) } \\
& \text { Range is given } \\
& \text { in terms of } \pi \\
& \text { so work in radians }
\end{aligned}
$$

© 2024 Exam Papers Practice

3.7.2 Inverse Trig Functions

Inverse Trig Functions

What are the inverse trig functions?

- The functions arcsin, arccos and arctan are the inverse functions of sin, cos and tan respectively when their domains are restricted
- $\sin (\arcsin x)=x$ for $-1 \leq x \leq 1$
- $\cos (\arccos x)=x$ for $-1 \leq x \leq 1$
- $\tan (\arctan x)=x$ for all x
- You will have seen and used the inverse trig operations many times already
- Arcsin is the operationsin ${ }^{-1}$
- Arccos is to the operation $\boldsymbol{c o s}^{-1}$
- Arctan is the operationtan-1
- The domains of sin, cos, and tan must first be restricted to make them one-to-one functions
- A function can only have an inverse if it is a one-to-one function
- The do main of $\boldsymbol{\operatorname { s i n }} \boldsymbol{x}$ is restricted to $-\pi / 2 \leq \boldsymbol{x} \leq \pi / 2\left(-90^{\circ} \leq \boldsymbol{x} \leq 90^{\circ}\right)$
- The domain of $\cos x$ is restricted to $0 \leq x \leq \pi\left(0^{\circ} \leq x \leq 180^{\circ}\right)$
- The domain of $\tan \boldsymbol{x}$ is restricted to $-\pi / 2<x<\pi / 2\left(-90^{\circ}<x<90^{\circ}\right)$
- Be aware that $\sin ^{-1} x, \cos ^{-1} x$, and $\tan ^{-1} x$ are not the same as the reciprocal trig functions
- They are used to solve trig equations such as $\sin x=0.5$ for all values of x
- $\arcsin x$ is the same as $\sin ^{-1} x$ but not the same as $(\sin x)^{-1}$

What do the graphs of the inverse trig functions look like?

- The graphs of arcsin, arccos and arctan are the reflections of the graphs of sin, cos and tan(after their do mains have been restricted) in the line $y=x$
- The domains of $\arcsin x$ and $\arccos x$ are both $-1 \leq x \leq 1$
- The range of $\arcsin x$ is $-\pi / 2 \leq y \leq \pi / 2$

Page 7 of 9
For more help visit our website www.exampaperspractice.co.uk

- The range of $\arccos x$ is $0 \leq y \leq \pi$

- The domain of arctan x is $x \in \mathbb{R}$
- The range of $\arctan x$ is $-\pi / 2<y<\pi / 2$
- Note that there are horizontal asymptotes at $\pi / 2$ and $-\pi / 2$

How are the inverse trig functions used?

- The functions arcsin, arccos and arctan are used to evaluate trigo no metric equations such as sin $x=0.5$
- If $\sin x=0.5$ then $\arcsin 0.5=x$ forvalues of x between $-\pi / 2 \leq x \leq \pi / 2$
- You can then use symmetries of the trig function to find solutions over otherintervals
- The inverse trig functions are also used to help evaluate algebraic expressions
- From $\sin (\arcsin x)=x$ we can also saythat $\sin ^{n}(\arcsin x)=x^{n}$ for $-1 \leq x \leq 1$
- If using an inverse trig function to evaluate an algebraic expression then rememberto consider the domain and range of the function
- $\arcsin (\sin x)=x$ onlyfor $-\pi / 2 \leq x \leq \pi / 2$
- $\arccos (\cos x)=x$ only for $0 \leq x \leq \pi$
- $\arctan (\tan x)=x$ onlyfor $-\pi / 2<x<\pi / 2$
- The symmetries of the trig functions can be used when values lie outside of the domain or range
- Using $\sin (x)=\sin (\pi-x)$ you get $\arcsin (\sin (2 \pi / 3))=\arcsin (\sin (\pi / 3))=\pi / 3$

- Exam Tip

- Make sure you know the shapes of the graphs for sin, cos and tan so that you can easily reflect them in the line $y=X$ and hence sketch the graphs of arcsin, marcos and arctan

Worked example

Given that X satisfies the equation $\arccos x=k$ where $\frac{\pi}{2}<k<\pi$, state the range of possible values of \boldsymbol{X}.

If $\arccos x=k$, then $x=\operatorname{cosk}(\cos (\arccos x)=x)$

For $\frac{\pi}{2}<k<\pi,-1<\cos k<0$

