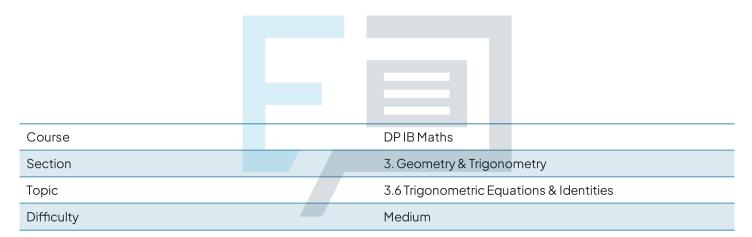


3.6 Trigonometric Equations & Identities Mark Schemes



Exam Papers Practice

To be used by all students preparing for DP IB Maths AA SL Students of other boards may also find this useful

(i) $\cos^2 \alpha + \left(\frac{3}{7}\right)^2 = 1$ Use Pythagorean identity Question 1 $\cos^{3} d = 1 - \left(\frac{3}{7}\right)^{2} = \frac{40}{49} \implies \cos d = \frac{1}{7} = \frac{40}{49} = \frac{1}{7} = \frac{1}{7}$ $\cos d = \frac{2\sqrt{10}}{7}$ } $\cos d \ge 0$ for $0 \le d \le \frac{\pi}{2}$ (ii) $\sin 2\alpha = 2\left(\frac{3}{7}\right)\left(\frac{2\sqrt{10}}{7}\right)$ Use double angle identity $\sin 2d = \frac{12\sqrt{10}}{49}$ (iii) $\cos 2\alpha = 1 - 2\left(\frac{3}{7}\right)^2$ Use double angle identity $\cos 2\alpha = \frac{31}{49}$ 1-2 sin² a is easiest here! (iv) $\tan 2\alpha = \frac{\left(\frac{12 \text{ Jio}}{49}\right)}{\left(\frac{31}{49}\right)}$ Use identity for tangent tan 2d 12 JIO IS Practice

Question 2

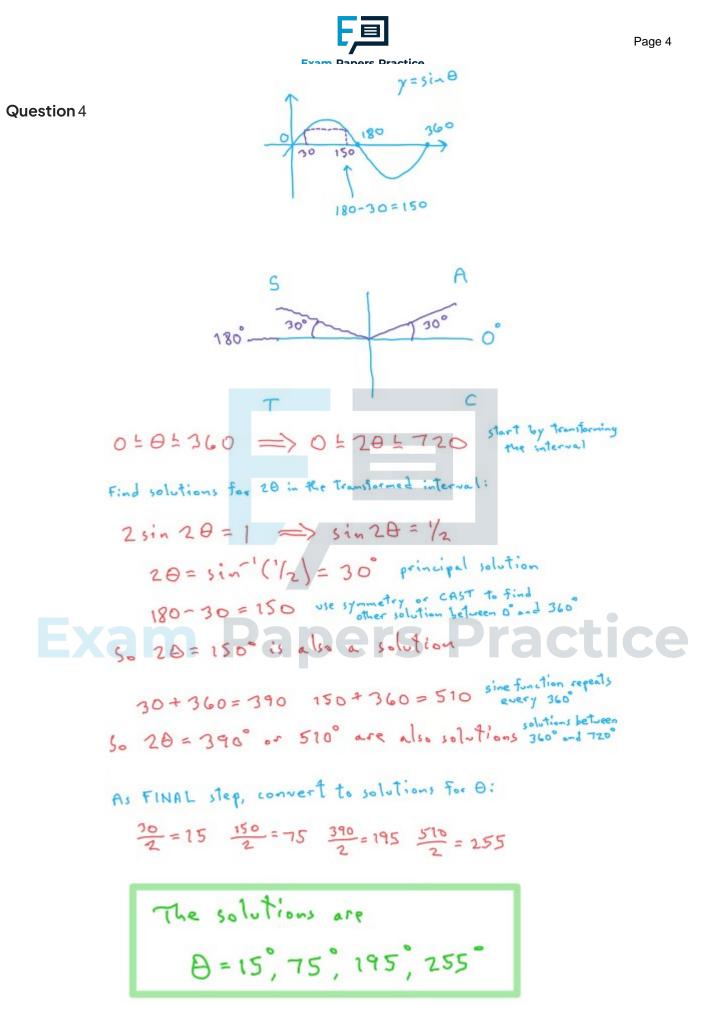
$$\left(\frac{1}{5}\right)^{2} + \sin^{2} B = 1$$
 Use Pythagorean identity to find sinB

$$\sin^{2} B = 1 - \left(\frac{1}{5}\right)^{2} = \frac{24}{25} \implies \sin B = \pm \frac{1}{25} = \pm \frac{2\sqrt{6}}{5}$$

$$\implies \sin B = -\frac{2\sqrt{6}}{5} \qquad 3 \sin B \pm 0 \text{ for } \frac{3\pi}{2} \pm B \pm 2\pi$$
(i) $\cos 2B = 2\left(\frac{1}{5}\right)^{2} - 1$ Use double angle identity
 $\cos 2B = -\frac{23}{25}$ $2\cos^{2} B - 1$ is easiest here!
(ii) $\sin 2B = 2\left(-\frac{2\sqrt{6}}{5}\right)\left(\frac{1}{5}\right)$ Use double angle identity
 $\sin 2B = -\frac{4\sqrt{6}}{25}$ Use double angle identity
(iii) $\tan 2B = \frac{\left(-\frac{4\sqrt{6}}{25}\right)}{\left(-\frac{23}{25}\right)}$ Use identity for tangent
 $\tan 2B = \frac{4\sqrt{6}}{23}$

Question 3

(i)
$$2 \sin M \cos M = \sin 2M$$
 Use double angle identity
 $2r \cos M = 5$
 $\cos M = \frac{5}{2r}$ } This is valid as long as
 $r = \sin M \neq 0$
Note: $\cos^2 M + \sin^2 M = 1 \implies \cos^2 M + r^2 = 1$
 $\implies \cos^2 M = 1 - r^2 \implies \cos M = \pm \sqrt{1 - r^2}$
But we don't know if $\cos M$ is positive or negative,
so we can't answer the question this way.
(ii) $\tan M = \frac{r}{(\frac{5}{2r})}$ Use identity for tangent
 $= r \pm \frac{5}{2r} = r \times \frac{2r}{5}$
Xam $\tan M = \frac{2r^2}{5}$ **Bractice**



For more help visit our website www.exampaperspractice.co.uk

180

135

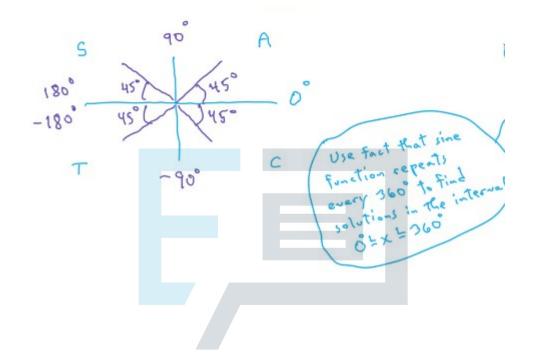
45

360

-135

180 -45

Question 5



Exam Papers Practice

2 sinx =
$$\frac{1}{\sin x}$$

2 sin x = 1
sin x = $\frac{1}{2}$ \implies sinx = $\frac{1}{\sqrt{2}}$ or $-\frac{1}{\sqrt{2}}$
If sinx = $\frac{1}{\sqrt{2}}$ \implies sinx = $\frac{1}{\sqrt{2}}$ or $-\frac{1}{\sqrt{2}}$
 $x = \sin^{-1}(\frac{1}{\sqrt{2}}) = 45^{\circ}$ principal solution
180-45 = 1735 use symmetry we CAST to find other solution
So x = 1735 is another solution
1f sinx = $-\frac{1}{\sqrt{2}}$
 $x = sin^{-1}(-\frac{1}{\sqrt{2}}) = -45^{\circ}$ principal solution
 $-180+45 = -135$ use symmetry we CAST to find other solution
So x = -135^{\circ} is another solution
 $3 \circ x = -135^{\circ}$ is another solution
 $3 \circ x = -135^{\circ}$ is another solution
 $3 \circ x = 225^{\circ}$ and $x = 315^{\circ}$ are also solutions
The solutions are space also solutions
 $x = 45^{\circ}$, 135, 225, 315

Question 6

Exam Papers Practice
(x-2)(x-3) =
$$x^2 - 3x - 2x + 6 = x^2 - 5x + 6$$

Therefore
(x+1)(x-2)(x-3) = (x+1)(x^2 - 5x + 6)
= $x(x^2 - 5x + 6) + 1(x^2 - 5x + 6)$
= $x^3 - 5x^2 + 6x + x^2 - 5x + 6$
= $x^3 - 4x^2 + x + 6$

Page 7

b) Use the result from part (a):

$$\tan^{3}x - 4\tan^{3}x + \tan x + 6 = 0$$

 $\Longrightarrow (\tan x + 1)(\tan x - 2)(\tan x - 3) = 0$
 $\Longrightarrow \tan x = -1$, $\tan x = 2$, or $\tan x = 3$

$$x = \tan^{-1}(-1) = -45^{\circ} \text{ principal value (from GDC)}$$

$$x = \tan^{-1}(-1) = -45^{\circ} \text{ principal value (from GDC)}$$

$$x = \tan^{-1}(-1) = -45^{\circ} \text{ principal value (from GDC)}$$

$$x = -45 + 180 = 135^{\circ} \text{ find other solutions}$$

$$x = \tan^{-1}(2) = 63.434948... = 63.4^{\circ}(1 \text{ d. p.}) \text{ principal value (from GDC)}$$

$$x = \tan^{-1}(2) = 63.434948... = 63.4^{\circ}(1 \text{ d. p.}) \text{ principal value (from GDC)}$$

$$x = \tan^{-1}(3) = 71.565051... = 71.6^{\circ}(1 \text{ d. p.}) \text{ principal value (from GDC)}$$

$$x = \tan^{-1}(3) = 71.565051... = 71.6^{\circ}(1 \text{ d. p.}) \text{ principal value (from GDC)}$$

$$x = \tan^{-1}(3) = 71.565051... = 71.6^{\circ}(1 \text{ d. p.}) \text{ principal value (from GDC)}$$

$$x = \tan^{-1}(3) = 71.565051... = 71.6^{\circ}(1 \text{ d. p.}) \text{ principal value (from GDC)}$$

$$x = \tan^{-1}(3) = 71.565051... = 71.6^{\circ}(1 \text{ d. p.}) \text{ principal value (from GDC)}$$

 $x = 63.4^{\circ}, 71.6^{\circ}, 135^{\circ}, 243.4^{\circ},$ Exam 251.6°, 315° (to 1 2.p.) actice

 $\sin^2 x + \cos^2 x \equiv 1 \implies \sin^2 x \equiv 1 - \cos^2 x$

(a)
$$2\sin^{2}x + 3\cos x = 0$$

 $2(1-\cos^{2}x) + 3\cos x = 0$ substitute
 $2-2\cos^{2}x + 3\cos x = 0$ expand brackets
 $2\cos^{2}x - 3\cos x - 2 = 0$
 $(a=2, b=-3, c=-2)$
Note that
 $-2\cos^{2}x + 3\cos x + 2 = 0$ ($a=-2, b=3, c=2$)
is also a valid answer. But the version in
green will be more useful in part (b).

Exam Papers Practice

b)
$$2\sin^{2}x + 3\cos x = 0$$

 $\rightarrow 2\cos^{2}x - 3\cos x - 2 = 0$ from part (a)
Let $\gamma = \cos x$ rewrite quadratic in terms of γ
 $2\gamma^{2} - 3\gamma - 2 = 0$
 $(2\gamma + 1)(\gamma - 2) = 0$ solve
 $\gamma = -\frac{1}{2}$ or $\gamma = 2$
So $\cos x = -\frac{1}{2}$ or $(\cos \pi = 2)$ yreater than
 $x = \cos^{-1}(-\frac{1}{2}) = 120^{\circ}$ principal solution
or $x = -120^{\circ}$ to find other solution in sample
The solutions are
 $x = 220^{\circ} crs^{12}0^{\circ}$ ractice


```
a) Use Pythagorean identity
```

$$\cos^{2} x + \sin^{2} x = 1 \implies \cos^{2} x = 1 - \sin^{2} x$$

Therefore

$$2\cos^{2} x - \sin x = 1$$

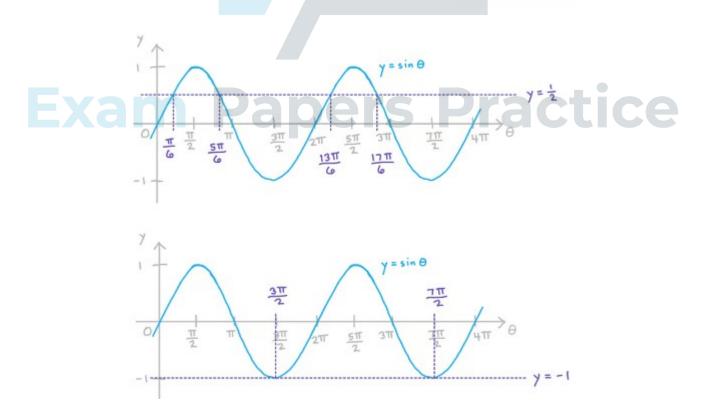
$$\implies 2(1 - \sin^{2} x) - \sin x = 1$$

$$2 - 2\sin^{2} x - \sin x = 1$$

$$0 = 1 - 2 + 2\sin^{2} x + \sin x$$

$$0 = 2\sin^{2} + \sin x - 1$$

$$2\sin^{2} x + \sin x - 1 = 0$$



b) Use the result from part (a):

$$2\cos^2 x - \sin x = 1$$

 $\implies 2\sin^2 x + \sin x - 1 = 0$ This is a
($2\sin x - 1$)($\sin x + 1$) = 0 factorise
 $\sin x = \frac{1}{2}$ or $\sin x = -1$

Find primary solutions, then use symmetry of sine function to find other solutions in the interval:

