Mark schemes

1	(a)	1.	Membrane more permeable to potassium ions and less permeable to sodium ions;	
Ш		2.	Sodium ions actively transported / pumped out and potassium ions in.	2
	(b)	1. Sodi pres	(Pressure causes) membrane / lamellae to become deformed / stretched;2. um ion channels in membrane open and sodium ions move in; 3. Greater sure more channels open / sodium ions enter.	3
	(c)	1. 2.	Threshold has been reached; (Threshold or above) causes maximal response / all or nothing principle.	2
	(d)	1.	Less / no saltatory conduction / action potential / impulse unable to 'jump' fromnode	;
		to no 2.	Dde; More depolarisation over length / area of membranes.	2 [9]
2	(a)) 0.32.		
			Correct answer = 2 marks Accept 32% for 1 mark max Incorrect answer but identifying 2pq as heterozygous = 1 mark	2
	(b)	1. 2. 3.	Mutation produced <i>KDR minus /</i> resistance allele; DDT use provides selection pressure; Mosquitoes with <i>KDR minus</i> allele more likely (to survive) to reproduce; 4. Leading to increase in <i>KDR minus</i> allele in population.	4
	(c)	1. 2.	Neurones remain depolarised; So no action potentials / no impulse transmission.	2
	(d)	1. 2.	(Mutation) changes shape of sodium ion channel (protein) / of receptor(protein); DDT no longer complementary / no longer able to bind.	2
	(a)	Any	two from:	ניין

- 3
- light
- pressure
- touch

- temperature
- chemicals
- (loud) noise
- smell;

Two required for 1 mark Do not accept unqualified reference to dust / particles / objects Accept (rapid) movement (of particles / air) towards the eye Accept humidity / moisture / tears

- (b) 1. Standard deviations / standard errors;
 - 2. (So) likely to overlap;
- (c) 1. Would not know the patient's / human's normal blink rate <u>so</u>unable to make a comparison;
 - 2. Blink rate could be affected by stress of seeing a doctor;
 - 3. Many factors could affect blink rate <u>so</u> it would be difficult to tell if blink rate was due to illness
- 2 max(d) 1. Not possible to predict intermediate values;
 - 2. Only one result for each time period / not mean values;
- (e) Collected paired data;
- (f) 1. No / low influx of sodium ions;
 - So no depolarisation / action potential;
 2. 'so no impulses' insufficient
- (g) 1. Allows calcium ions in;
 - 2. At end of presynaptic neurone;
 - 3. Causing release of neurotransmitter;
 - 1. Accept Ca²⁺/Ca ions but not Ca/Ca+
 - 2. The idea of the end of the presynaptic neurone must be given e.g. presynaptic knob
- (h) 1. Reference to large group size;

1

2

2

1

- 2. Reference to matching a specific, named variable;
- 3. Applying a statistical test to the data;
 - 1. Accept '≥ 20 / many / lots' but not 'several / less than 20'
 - 2. Accept any named variable other than age.
 - 3. Accept 'use SE / 95% confidence limits'

			[10] (d) (l)
	(ii)	D;	Y
(►)	(0)		·
(D)	(Syr	Accept bulb of synapse for prosynaptic);
		Reject vesicles in the membrane	
		1 (c) (i) Has similar shape/	structure to dopamine
		OR	
		Complementary (to binding site on receptor);	
		Ignore competitive inhibitor	
		Accept tertiary structure	
		Reject active site	
		Reject same shape as dopamine/as receptor	
	(ii)	1. (Binding) does not lead to opening of sodium ion	
		channels;	
		ions do not diffuse in;	um
		OR	
		3. Opens chloride ion channels;	
		4. Causing hyperpolarisation / preventing depolarisatio	n
		Mark either 1 and 2 OR 3 and 4	,
		1. Accept stops dopamine opening sodium ion chan	neis
		Keject sodium unqualified Account no concreter potential	
		2. Accept no generator potential	

(a) One suitable suggestion; explained;

- Action potentials travel more slowly / don't travel; Accept: fewer / no saltatory movement of potentials
- 2. So delay in muscle contraction / muscles don't contract / muscles contractslow(er);

OR

- 3. Action potentials / depolarisation 'leaks' to adjacent neurones; *Accept: neurones not insulated*
- 4. So wrong muscle (fibres) contract.
- (b) Lipid-soluble / pass through phospholipid bilayer. Not just 'pass through membranes'
- (c) 1. Prevents influx of calcium <u>ions</u> (into pre-synaptic membrane); Need idea of <u>moving into</u> pre-synaptic membrane / synaptic knob Accept Ca⁺⁺ / Ca²⁺
 - (Synaptic) vesicles don't fuse with membrane / vesicles don't releaseneurotransmitter;
 Accept vesicles don't release acetylcholine
 - 3. Neurotransmitter does not diffuse across synapse / does not bind to receptors (on post-synaptic membrane);

Accept: sarcolemma / muscle membrane for post-synaptic membrane

4. No action potential / depolarisation (of post-synaptic membrane) / sodium (ion) channels do not open / prevents influx of sodium <u>ions</u>.

Accept Na⁺

Accept prevents depolarisation of muscle cell Ignore: descriptions of events at post-synaptic membrane involving calcium ions and muscle contraction

(d) 1. They won't affect synapses in brain;

6

- They won't cause problems with the brain's function / won't damage brain; Accept: suitable named problem e.g. hallucination Ignore: unqualified references to 'side effects' Accept: reference to addiction / harm of smoking (cannabis)
 - 3. (So only the) muscle / neuromuscular junctions treated / affected.

2 max

4

2 max

1

[9] (a) 1. (In myelinated) action potential / depolarisation only at node(s);

2. (In myelinated, nerve impulse) jumps from node to node / saltatory;

- 3. (In myelinated) action potential / impulse does not travel along whole length; The question is about speed of transmission, not repolarisation or related matters Accept converse for non-myelinated 3 (b) 1. Probability of obtaining this difference by chance; Reject 'results' once only This statement often split round 2. 2. Is less than 5% / less than 0.05 / less than one in twenty; Accept is 4.7% / 0.047 but reject less than 4.7% / 0.047 Accept correct greater than 95% / greater than 0.95 arguments 3. Difference is significant; *Reject 'results' once only* 2 max (All) dementia results lower (than control group) / non-dementia result higher; (C) 1. 2. Error bars do not overlap so differences are (possibly) significant; Neutral results Accept not due to chance / statistically significant In this context, accept references to standard deviation Dementia may be due to other factors / not only due to a lack of 3. myelin; Accept suitable named factor e.g. genetic 4. (Because) big / significant differences in myelin in different dementia; Not just 'different' 5. Only small sample sizes / only one study / more data required; 4 max [9] (a) (i) 1. Slower diffusion; Accept description of diffusion eg 'movement down concentration gradient' but concept of slower is required 2. (Of) ions / Na⁺ / K⁺; Reference to ions is required. Reject other named ions, eg calcium ions Ignore references to synaptic transmission or rates of respiration 2 (ii) 1. Myelination / saltatory conduction; Accept reference to presence of nodes of Ranvier
 - 2. Axon diameter;

7

(b)	Keep everything the same but not in bath / at room temperature / same clothing asfor immersion / sitting in empty bath / sitting in water at room temperature; Accept 'normal' or 'comfortable' as equivalent to room temperature		
		Ignore reference to body temperature	
			1
(c)	(i)	(Find) the most common result / time / the result / time that occurs the most;	1
	(ii)	Highest and lowest result / time;	
		Accept 'difference between highest and lowest results / times'	1
(d)	1.	(Which is based on) <u>mean</u> of 20 people / large (enough) sample; This point is possible for students that suggest the difference is significant	
	2.	(But) SE bars / confidence limits overlap; This point applies whether 1 × SE or 2 × SE is used	
	3.	Reference to 0.297 ± 0.0424 / 0.326 ± 0.0366 / confidence limits = 2 × SE; This point rewards knowledge of use of 2 × SE (as per Students' Statistics Sheet)	
	4.	(So) difference is not significant;	
		This point is only awarded after marking point 2 or marking point 3 has been given	mov
		[10] (a) 1. Causes sodium ion channels	s to open;
		1. Reject if wrong sequence of events	
		2. Sodium ions enter (cell and cause depolarisation);	
		Reject sodium on its own only once	2
(b)	1.	(If not removed) keeps binding (to receptors); Accept answers based on what happens if it is transported out – ie what should happen	
	2.	Keeps causing action potentials / depolarisation (in post-synaptic membrane);	
		2. Accept keeps Na ⁺ channels open(ing)	2
(c)	1.	Movement in all groups (about) same before MDMA; Q	
	2.	MDMA increases movement in Group L;	

2. Accept normal mice for L

		3. Group K shows MDMA causes movement;	
		3. Accept K is a control	
		4. No / little increase in mice without receptor / Group M ;	
		3 m.	ax [7]
	(a)	(lon) channel proteins open, sodium in:	
9	(u)		
		Changes membrane potential / makes inside of axon less negative / positive / depolarisation / reaches threshold;	
		More channels open / positive feedback;	
		Accept other phrases for ion channel proteins providing that it is clear that it is something through which ions pass. Reject carrier.	
		First marking point relates to opening. Third point must relate to more (channels) opening.	3
	(h)	Determium channels anon	
	(u)	Polassium channels open,	
		Potassium out;	
		Sodium channels close;	
		Do not penalise candidate who refers to sodium or potassium. lons are mentioned in question.	
		Reject pump	3
	(c)	Pump / active transport / transport against concentration gradient;	
		Of sodium from axon / sodium out / of potassium in;	
		Do not penalise candidate who refers to sodium or potassium. lons are mentioned in question	2
		[8] (a) closed open	² closed;
10		· · ·	
10 0	closed	l closed open;	2
			-
	(b)	active transport / pump of Na ⁺ <u>out</u> of axon; <u>diffusion</u> of K ⁺ <u>out</u> of	
		axon / little <u>diffusion</u> of Na ⁺ <u>into</u> the axon,	2
	(\mathbf{a})	can not nace through phoepholipid hildvarthocause water	
	(0)	soluble / not lipid soluble / charged / hydrophilic / hydrated;	
			2 [6]

(a) In table:

		D	All 3 correct = 2 marks;; 2 correct =	
		В	1 mark;	
		С	0 or 1 correct = 0 marks	
				2
(b)	(i) leap	myelin i ing node	insulates / prevents ion movement; saltation / describedre to node;	
				2
	(ii)	cat has	higher body temperature; <i>ignore</i>	
		faster d	iffusion of ions / faster opening of ion pores / gates / channels;	2
(c)	1 pote	increasi entialdiffer	ing stimulus (potential) causes decrease in rence / rise in potential at P;	
	2	1 <u>or</u> 2 is threshol	s sub-threshold / 1 <u>or</u> 2 does <u>not</u> give action potential / 3 <u>or</u> 4 is above ld / 3 <u>or</u> 4 does give an action potential;	
	3	influx of	Na ⁺ <u>ions;</u> (not just Na / sodium)	
	4	voltage-	gated channels (in axon membrane) opens / opens Na ⁺ channels /	
		membra	ane more permeable to Na ⁺	
		(NOT ju	ist Na / sodium);	
	5	sufficien propaga	nt for stimulation of adjacent region of axon therefore impulse ated(from P to Q);	_
				5
(d)	1	X / Acet	tylcholine \rightarrow opening of Na ⁺ channels / increases	
		Na⁺ per	meability and Na ⁺ ion <u>entry</u> into Z;	
	2	Y / Cl⁻ e negative	entry - lowers potential / increases potential difference / makes potential more e;	9
	3	X stimul	lates <u>and</u> Y inhibits (Z);	
	4	balance determir	of impulses from X and Y determines whether Zfires action potential / nes whether potential rises above threshold;	4
			[15] (a) action potential arrives / depolarisation	occurs;

12		calcium ions enter synaptic knob; vesicles	
		fuse with membrane; acetylcholine diffuses (across synaptic cleft); binds to receptors;	4 max
	(b)	inside becomes more negatively charged / hyperpolarised; stimulation does not reachthreshold level / action potential not produced; depolarisation does not occur / reduces effect of sodium ions entering;	3
	(c)	 (i) inhibits enzyme (which breaks down GABA);more GABA available (to inhibit neurone); 	
		OR	
		binds to (GABA) receptors; inhibits neuronal activity / chloride ions enter (neurone);	2 max
		 (ii) receptors have different tertiary / 3D structure / shape not complementa GABA cannot bind; inhibition of neuronal activity does not occur / chlor do not enter; 	ary; ide ions
			3
	(d)	motor area;left cerebral hemisphere;	2
_		[14] (a) Tra	ansports Na ⁺ and K ⁺ ;
13		By active transport / pump / against concentration gradient; Restores ion balance after an action potential; [<i>reject</i> K ⁺ out and Na ⁺ in]	
			2
	(b)	 each protein has a specific tertiary structure / shape; because the ions have different sizes / shape / charge; [<i>reject</i> receptors binding] 	2
		 (ii) fewer protein B molecules, which transport sodium ions / more protein A molecules, which transport potassium ions; 	1
		[5] (a) 1. automatic (adjustments to changes in enviro	onment) / involuntary;
14			
		 reducing / avoiding damage to tissues / prevents injury / named injury e. role in homeostasis / example; 	g. burning;

- 4. posture / balance;
- 5. finding / obtaining food / mate / suitable conditions;

6.	escape	from	predators;
----	--------	------	------------

(ignore 'danger' or 'harm' unless qualified)

				0	, ,	3 max
	(b)	(i)		isos) calcium ions /	Catt to optor avon:	
	(U)	(1)		(o to / fuco with (or	Ca to enter axon,	
			2. Vesicles mov	(released):	esynaptic) membrane,	
			4 (acetylcholine	e) diffuses across (synantic cleft / synanse:	
			5. binds with re	ceptors on (postsv	naptic) membrane:	
			(reject ac	tive sites disqualify	v point)	
				/ Not ontor (postov	(pontio) nourono:	
			7 depelariestic	na enter (postsy	mombrano:	
			8 if above thre	shold nerve impuls	e / action potential produced	
					e / dellen peterliar produced	6 max
		(ii)	neurone to neu	urone and neurone	to muscle; action potential in	
			neurone and r	no action potential	in muscle / sarcolemma; no	
			summation in n	nuscle; muscle resp	oonse always excitatory (never	
			inhibitory); <u>so</u>	<u>me</u> neuromuscula	ar junctions have different	
			neurotransmitte	ers; (penalise 'nervo	e' once)	
						2 max
						[11]
	(a)	sodi	um gates or cha	nnels open / increa	se in permeability of axon memb	rane to sodium
	ion;		9			
15	odium	ions	enter axon:			
	ourun		ontor axon,			2
						-
	(c)	non-	myelinated – nex	xt section of memb	rane depolarised / whole	
		mem	nbrane;			
		myel	inated – depolar	isation / ion mover	nent only at nodes;	
		impu	ilse jumps from r	node to node / salta	itory conduction;	2
						s South a still of the second state
				[5] (a)	(epitnelial cell) of tubule cells (carry out active transport;
16						
		1.000	nortablarida / a	adiuma iana aut (af f	iltrata), a sainat	
		trans	sport chionde / so	Daium ions out (or i at: into surrounding	ntrate); against	
		crea	tes / maintains w	ater notential gradi	ient for water	
		reab	sorption: counte	rcurrent multiplier.		
		1000		iourione maniphon,		5 max
	(b)	if wa	ter potential of b	lood falls, detected	by receptors in	
		nypc	makan anlla of	to ADH released fro	om pitultary gland;	towator
		АЛЦ			tai convoluted tubule permeable	io waler,
			(accept L	JCT)		
		wate	r leaves filtrate h	ov osmosis:		
		smal	ller volume of uri	ne produced;		
				· ·		

		(accept converse if water potential of blood rises)	4 max	
	(c)	(autonomic reflex),autonomic ganglion involved; extra synapse outside the spinal cord; inhibitory rather than excitatory neurone; more neurones involved;	2 max	ГАА
] (a)	membrane relatively impermeable / less permeable to sodium ions / gated channels a	ire	[11
17		closed / fewer channels; sodium ions pumped / actively transported <u>out;</u> by sodium ion carrier / intrinsic proteins; inside negative compared to outside / 3 sodium ions out for two potassium ions in;		
		(if sodium mentioned but not in context of ions, negate 1 mark)	4	
	(b)	(i) 1.6;	1	
		 (ii) 18 ÷ 1.6 = 11.25; multiply by 1000 to convert from ms to s / 11 250; 		
		(correct method = 1 mark, $\frac{distance}{time}$		
		or \times 1000) (correct answer based on (b)(i) = 2 marks)	2	
		 (iii) time for transmission / diffusion across the neuromuscular junction / synapse;time for muscle (fibrils) to contract; 	1 max	
	(c)	movement by diffusion; binding to receptors on (post-synaptic) membrane; causing sodium channels to open / sodium ions to move in to muscle (cell);	3	
	(d)	 toxin binds to / competes for / blocks the acetylcholine receptors;acetylcholine can not depolarise the membrane / the toxin does not cause depolarisation; 		
		(allow references to generating action potentials instead of depolarisation, do not allow references to impulses in muscles)	2	
		 (ii) acetylcholinesterase is unable to breakdown acetylcholine;acetylcholine still available to depolarise the membrane / generate action potentials in the membrane; 	2	
				[15]

5]

Ignore working Allow 1 mark if decimal point in wrong position

OR

 $\frac{1000}{160}$ / $\frac{1}{160}$

Allow 1 mark

(b) Ref. to 'refractory period';

Requires greater stimulation; To reach threshold / threshold cannot be reached / to cause depolarisation;

K ⁺ channels are open / more negative potential than resting potential / membrane is hyperpolarised;

Na + channels are inactive/are closed / sodium channels will not open;

3 max

[5]

2

(a) (i) <u>A to B</u>:

Mark (i) and (ii) as a whole

Sodium channels open / membrane more permeable to sodium (ions);

Max 3 for each section

Sodium ions enter; By diffusion / from high to low concentration; Allow 'diffusion' point ONCE only

Ref. <u>sodium</u> ions have positive charge / cause change from negative to positive potential; *Accept refs to sodium and potassium*

(ii) <u>After B</u>:

Sodium channels close; Potassium channels open / membrane more permeable to potassium ions; Potassium ions leave; By diffusion / from high to low concentration (ONCE only);

4 max

(b) (More) respiration;

Reject anaerobic respiration

19

(More) energy supplied / (more) ATP supplied; Reject 'produce' energy

For active transport of ions / 'sodium (-potassium) pump' / pumping out sodium ions / for neurotransmitter synthesis / for vesicle movement; *Accept named e.g.*

[7] (a) Potassium channels open (and K⁺ ions diffuse out);

3

20 Accept references to sodium channels opening; Sodium channels close (and stops Na⁺ ions diffusion in); Leading to depolarisation; Accept sodium pump (starts) to pump out sodium ions 2 (b) (Absolute) refractory (period); 1 (c) (i) Causes them to contract; And relax; Rapidly/twitch; 2 max (ii) Cause continuous muscle contraction; Accept a reasonable suggestion of harm – linked to muscle contraction At high force; Causing failure to breathe/heart stops pumping/ damage to bones or joints; 2 max Cocaine (binding) changes shape of transporter/prevents dopamine binding; [7] (a) 21 Reject references to active site Transporter cannot move (bound) dopamine (through membrane / protein / into cell); Dopamine remains / builds up in synapses (leading to feelings of pleasure); 3 (b) (i) Polymerase chain reaction / PCR; 1 Single-stranded DNA; (ii)

Reject reference to a single strand of DNA

Bases / sequence complementary to DNA / gene to be identified;

(Radioactively / fluorescent) labelled so that it can be detected;

2 max

(c) Mutation changes base sequence of gene / DNA; Accept references to active site

(Thus) changing amino acid sequence; Changes tertiary structure / shape of protein/transporter; Cocaine binding site changes/cocaine cannot bind; Dopamine can still bind (and be transported);

3 max