

3.6 Trigonometric Equations & Identities

Contents

- ★ 3.6.1 Simple Identities
- ✗ 3.6.2 Compound Angle Formulae
- ✤ 3.6.3 Double Angle Formulae
- ✤ 3.6.4 Relationship Between Trigonometric Ratios
- ✤ 3.6.5 Linear Trigonometric Equations
- ✤ 3.6.6 Quadratic Trigonometric Equations

Stellis Reserved

3.6.1 Simple Identities

Simple Identities

What is a trigonometric identity?

- Trigonometric identities are statements that are true for all values of X or heta
- They are used to help simplify trigonometric equations before solving them
- Sometimes you may see identities written with the symbol =
 - This means 'identical to'

What trigonometric identities do I need to know?

The two trigonometric identities you must know are

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

- This is the identity for $\tan \theta$
- $\sin^2\theta + \cos^2\theta = 1$
 - This is the Pythagorean identity
 - Note that the notation $\sin^2\theta$ is the same as $(\sin\theta)^2$
- Both identities can be found in the formula booklet
- Rearranging the second identity often makes it easier to work with
 - $\sin^2\theta = 1 \cos^2\theta$
 - $\cos^2\theta = 1 \sin^2\theta$

Where do the trigonometric identities come from?

- You do not need to know the proof for these identities but it is a good idea to know where they come from ACTIC:
- From SOHCAHTOA we know that

•
$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{O}{H}$$

• $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{A}{H}$

•
$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{C}{A}$$

• The identity for $\tan \theta$ can be seen by diving $\sin \theta$ by $\cos \theta$

$$\frac{\sin\theta}{\cos\theta} = \frac{\frac{O}{H}}{\frac{A}{H}} = \frac{O}{A} = \tan\theta$$

• This can also be seen from the unit circle by considering a right-triangle with a hypotenuse of 1

•
$$\tan \theta = \frac{O}{A} = \frac{\sin \theta}{\cos \theta}$$

- The Pythagorean identity can be seen by considering a right-triangle with a hypotenuse of 1
 - Then (opposite)² + (adjacent)² = 1
 - Therefore $\sin^2 \theta + \cos^2 \theta = 1$
- Considering the equation of the unit circle also shows the Pythagorean identity
 - The equation of the unit circle is $x^2 + y^2 = 1$
 - The coordinates on the unit circle are $(\cos \theta, \sin \theta)$
 - Therefore the equation of the unit circle could be written $\cos^2 \theta + \sin^2 \theta = 1$
- A third very useful identity is $\sin \theta = \cos (90^\circ \theta) \text{ or } \sin \theta = \cos (\frac{\pi}{2} \theta)$
 - This is not included in the formula booklet but is useful to remember

How are the trigonometric identities used?

- Most commonly trigonometric identities are used to change an equation into a form that allows it to be solved
- They can also be used to prove further identities such as the double angle formulae

Worked example

Show that the equation $2\sin^2 x - \cos x = 0$ can be written in the form $a\cos^2 x + b\cos x + c = 0$, where a, b and c are integers to be found.

 $2\sin^2 \infty - \cos \infty = 0$ Equation has both since and cosx so will need changing before it can be solved. Use the identity $\sin^2 2c = 1 - \cos^2 2c$ Substitute: $2(1 - \cos^2 x) - \cos x = 0$ Expand: $2 - 2\cos^2 x - \cos x = 0$ Rearrange: $2\cos^2 x + \cos x - 2 = 0$ a = 2, b = 1, c = -2Rights Reserved

3.6.2 Compound Angle Formulae

Compound Angle Formulae

What are the compound angle formulae?

- There are six compound angle formulae (also known as addition formulae), two each for sin, cos and tan:
- For **sin** the +/- sign on the left-hand side **matches** the one on the right-hand side
 - sin(A+B)≡sinAcosB + cosAsinB
 - sin(A-B)≡sinAcosB cosAsinB
- For cos the +/- sign on the left-hand side is opposite to the one on the right-hand side
 - cos(A+B)≡cosAcosB sinAsinB
 - cos(A-B)≡cosAcosB + sinAsinB
- For tan the +/- sign on the left-hand side matches the one in the numerator on the right-hand side, and is opposite to the one in the denominator
 - $\tan(A+B) \equiv \frac{\tan A + \tan B}{1 \tan A \tan B}$ $\tan(A-B) \equiv \frac{\tan A \tan B}{1 + \tan A \tan B}$
- The compound angle formulae can all the found in the formula booklet, you do not need to remember them

When are the compound angle formulae used?

- The compound angle formulae are particularly useful when finding the values of trigonometric ratios without the use of a calculator
 - For example to find the value of sin15° rewrite it as sin (45 30)° and then
 - apply the compound formula for sin(A B)
 - use your knowledge of exact values to calculate the answer
- The compound angle formulae are also used...
 - ... to derive further multiple angle trig identities such as the double angle formulae
 - ... in trigonometric proof
 - ... to simplify complicated trigonometric equations before solving

How are the compound angle formulae for cosine proved?

- The proof for the compound angle identity cos (A B) = cos A cos B + sin A sin B can be seen by considering two coordinates on a unit circle, P (cos A, sin A) and Q (cos B, sin B)
 - The angle between the positive x- axis and the point P is A
 - The angle between the positive x- axis and the point Q is B
 - The angle between P and Q is B A

- Using the distance formula (Pythagoras) the distance PQ can be given as
 |PQ|² = (cos A cos B)² + (sin A sin B)²
- Using the cosine rule the distance PQ can be given as
 - $|PQ|^2 = 1^2 + 1^2 2(1)(1)\cos(B A) = 2 2\cos(B A)$
- Equating these two formulae, expanding and rearranging gives
 - $2 2\cos(B A) = \cos^2 A + \sin^2 A + \cos^2 B + \sin^2 B 2\cos A \cos B 2\sin A \sin B$
 - $2 2\cos(B A) = 2 2(\cos A \cos B + \sin A \sin B)$
- Therefore $\cos(B A) = \cos A \cos B + \sin A \sin B$
- Changing -A for A in this identity and rearranging proves the identity for cos (A + B)
 - $\cos(B (-A)) = \cos(-A)\cos B + \sin(-A)\sin B = \cos A\cos B \sin A\sin B$

How are the compound angle formulae for sine proved?

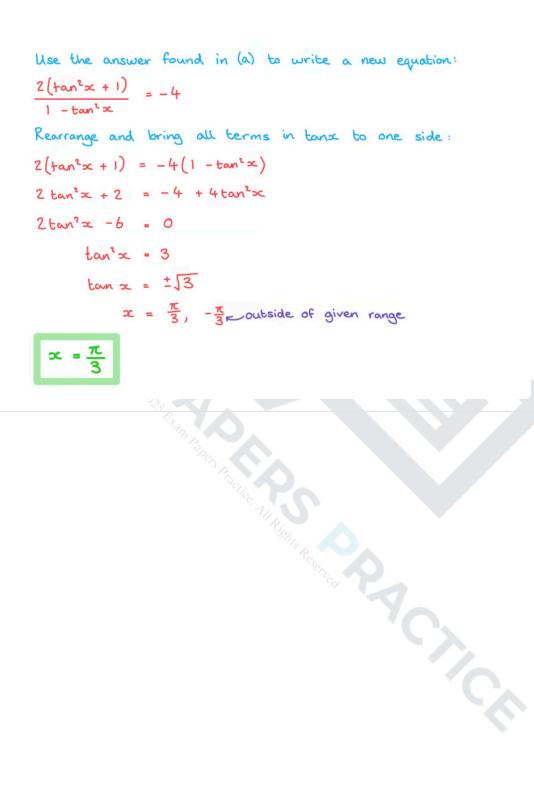
- The proof for the compound angle identity sin (A + B) can be seen by using the above proof for cos (B A) and
 - Considering $\cos(\pi/2 (A + B)) = \cos(\pi/2)\cos(A + B) + \sin(\pi/2)\sin(A + B)$
 - Therefore $\cos(\pi/2 (A + B)) = \sin(A + B)$
 - Rewriting $\cos(\pi/2 (A + B)) \operatorname{as} \cos((\pi/2 A) + B)$ gives
 - $\cos(\pi/2 (A + B)) = \cos(\pi/2 A)\cos B + \sin(\pi/2 A)\sin B$
 - Using cos (π/2 A) = sin A and sin (π/2 A) = cos A and equating gives
 sin (A + B) = sin A cos B + cos A cos B
 - Substituting B for -B proves the result for sin (A B)

How are the compound angle formulae for tan proved?

- The proof for the compound angle identities $\tan(A \pm B)$ can be seen by
 - Rewriting $\tan(A \pm B)$ as $\frac{\sin(A \pm B)}{\cos(A \pm B)}$
 - Substituting the compound angle formulae in
 - Dividing the numerator and denominator by cos A cos B

Worked example
a) Show that
$$\tan\left(x + \frac{\pi}{4}\right) - \tan\left(x - \frac{\pi}{4}\right) = \frac{2(\tan^2 x + 1)}{1 - \tan^2 x}$$

Use the compand angle formula for tax:
 $\tan\left(x + \frac{\pi}{4}\right) = \frac{\tan x + \tan \frac{\pi}{4}}{1 + \tan x \tan \frac{\pi}{4}} = \frac{\tan x + 1}{1 - \tan^2 x}$
 $\tan\left(x - \frac{\pi}{4}\right) = \frac{\tan x - \tan \frac{\pi}{4}}{1 + \tan x \tan \frac{\pi}{4}} = \frac{\tan x - 1}{1 + \tan x}$
Full together and simplify:
 $\frac{\tan x + 1}{1 - \tan x} = \frac{\tan x - 1}{1 + \tan x} = \frac{(\tan x + 1)(1 + \tan x) - (\tan x - 1)(1 - \tan x)}{(1 - \tan x)(1 + \tan x)}$
 $= \frac{\tan^3 x + 2 \tan x + 1 - (-\tan^3 x + 2 \tan x - 1)}{(1 - \tan x)(1 + \tan x)}$
 $= \frac{2 \tan^3 x + 2}{1 - \tan^3 x}$
(b) Hence, solve $\tan\left(x + \frac{\pi}{4}\right) - \tan\left(x - \frac{\pi}{4}\right) = -4$ for $0 \le x \le \frac{\pi}{2}$



3.6.3 Double Angle Formulae

Double Angle Formulae

What are the double angle formulae?

- The double angle formulae for sine and cosine are:
 - $\sin 2\theta = 2\sin \theta \cos \theta$
 - $\cos 2\theta = \cos^2 \theta \sin^2 \theta = 2\cos^2 \theta 1 = 1 2\sin^2 \theta$
 - $\tan 2\theta \equiv \frac{2\tan\theta}{1-\tan^2\theta}$
- These can be found in the formula booklet
 - The formulae for sin and cos can be found in the SL section
 - The formula for tan can be found in the HL section

How are the double angle formulae derived?

- The double angle formulae can be derived from the compound angle formulae
- Simply replace *B* for *A* in each of the formulae and simplify
- For example
 - Sin 2A = sin (A + A) = sinAcosA + sinAcosA = 2sinAcosA

How are the double angle formulae used?

- Double angle formulae will often be used with...
 - ... trigonometry exact values
 - ... graphs of trigonometric functions
 - ... relationships between trigonometric ratios
- To help solve trigonometric equations which contain $\sin heta \cos heta$:
 - Substitute $\frac{1}{2}\sin 2\theta$ for $\sin \theta \cos \theta$
 - Solve for 2 heta , finding all values in the range for 2 heta
 - The range will need adapting for 2 heta
 - Find the solutions for heta
- To help solve trigonometric equations which contain $\sin 2 heta$ and $\sin heta$ or $\cos heta$
 - Substitute $2\sin\theta\cos\theta$ for $\sin2\theta$
 - Isolate all terms in heta
 - Factorise or use another identity to write the equation in a form which can be solved
- To help solve trigonometric equations which contain $\cos 2 heta$ and $\sin heta$ or $\cos heta$
 - Substitute either $2\cos^2 \theta 1$ or $1 2\sin^2 \theta$ for $\cos 2\theta$
 - Choose the trigonometric ratio that is already in the equation
 - Isolate all terms in heta

- Solve
 - The equation will most likely be in the form of a quadratic
- To help solve trigonometric equations which contain tan 2θ
 - Substitute the double angle identity for tan 2θ
 - Rearrange, often this will lead to a quadratic equation in terms of $\tan \theta$
 - Solve
- Double angle formulae can be used in proving other trigonometric identities

Saas Baain Pause Rights Reserved

Worked example

Without using a calculator, solve the equation $\sin 2\theta = \sin \theta$ for $0^{\circ} \le \theta \le 360^{\circ}$. Show all working clearly.

Double angle identity: $\sin 2\theta = 2\sin \theta \cos \theta$ $2\sin\theta\cos\theta = \sin\theta$ Bring both identities to one side: $2\sin\theta\cos\theta - \sin\theta = 0$ Factorise : $sin\theta (2cos\theta - I) = 0$ Find solutions: $\sin\theta = 0$ $2\cos\theta - 1 = 0$ $\Theta = 0$ $\cos\theta = \frac{1}{2}$ $\theta = 60^{\circ}$ Find secondary values within range: $\cos 60^\circ = \frac{1}{2}$, so draw line to $x = \frac{1}{2}$ 60° 300 $R\sin\theta = 0$ gives the solutions $\theta = 0^\circ$, 180°, 360° Second solution 2 for $sin\theta = 0$ is 0 = 180° $\theta = 0^{\circ}, 60^{\circ}, 180^{\circ}, 300^{\circ}, 360^{\circ}$

3.6.4 Relationship Between Trigonometric Ratios

Relationship Between Trigonometric Ratios

What relationships between trigonometric ratios should I know?

- If you know a value for one trig ratio you can often use this to work out the value for the others without needing to find θ
- If you know that $\sin \theta = \frac{a}{b}$, where $a, b \in \mathbb{Z}^+$, you can:
 - Sketch a right-triangle with a opposite θ and b on the hypotenuse
 - Use Pythagoras' theorem to find the value of the adjacent side
 - Use SOHCAHTOA to find the values of $\cos\theta$ and $\tan\theta$
- If you know a value for $\sin \theta$ or $\cos \theta$ you can use the Pythagorean relationship
 - $\sin^2 \theta + \cos^2 \theta = 1$
 - to find the value of the other
- If you know a value for sin θ or cos θ you can use the double angle formulae to find the value of sin 2θ or cos 2θ
- If you know a value for $\tan \theta$ you can use the double angle formulae to find the value of $\tan 2\theta$
- If you know two out of the three values for $\sin \theta$, $\cos \theta$ or $\tan \theta$ you can use the identity in tan

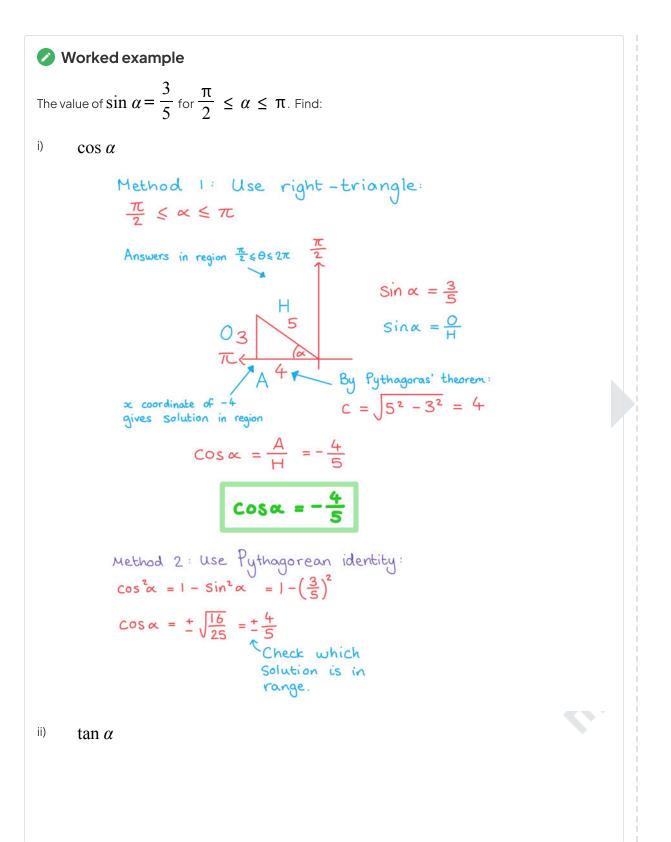
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

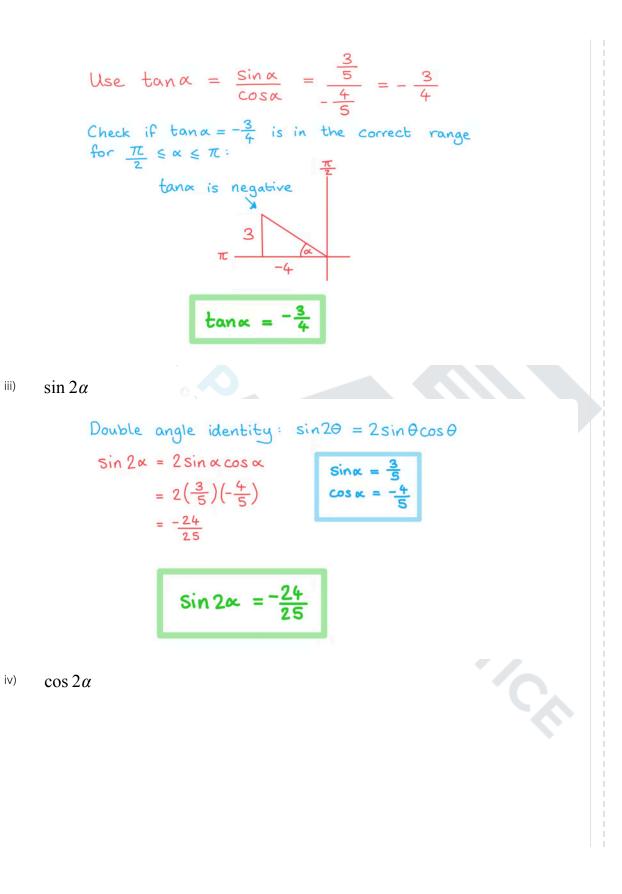
• to find the value of the third ratio

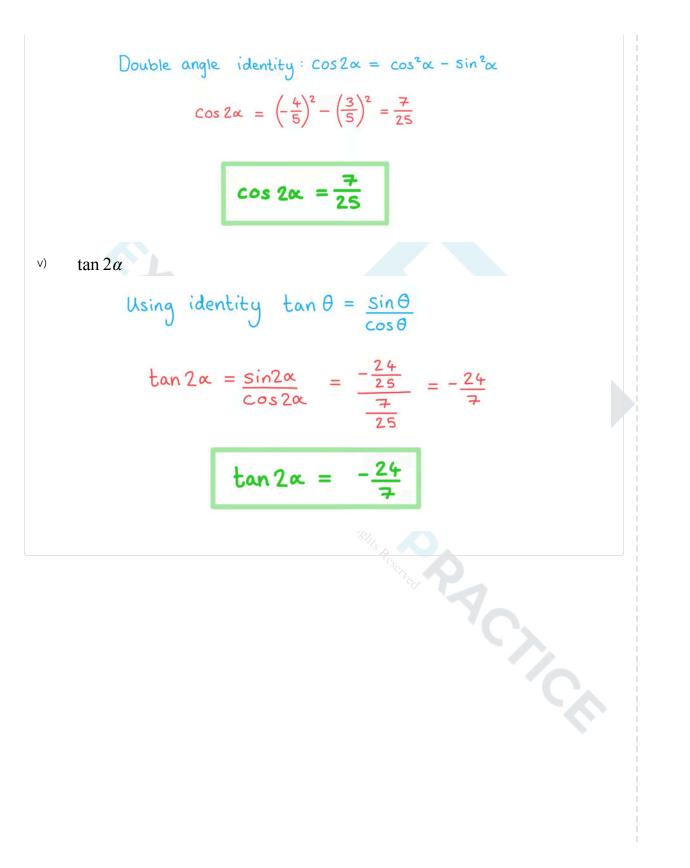
How do we determine whether a trigonometric ratio will be positive or negative?

- It is possible to determine whether a trigonometric ratio will be positive or negative by looking at the size of the angle and considering the **unit circle**
 - Angles in the range $0^{\circ} < \theta^{\circ} < 90^{\circ}$ will be positive for all three ratios
 - Angles in the range 90° < θ ° < 180° will be positive for sin and negative for cos and tan
 - Angles in the range $180^\circ < \theta^\circ < 270^\circ$ will be positive for tan and negative for sin and cos
 - Angles in the range $270^{\circ} < \theta^{\circ} < 360^{\circ}$ will be positive for cos and negative for sin and tan
- The ratios for angles of 0°, 90°, 180°, 270° and 360° are either 0, 1, -1 or undefined
 - You should know these ratios or know how to derive them without a calculator

6







3.6.5 Linear Trigonometric Equations

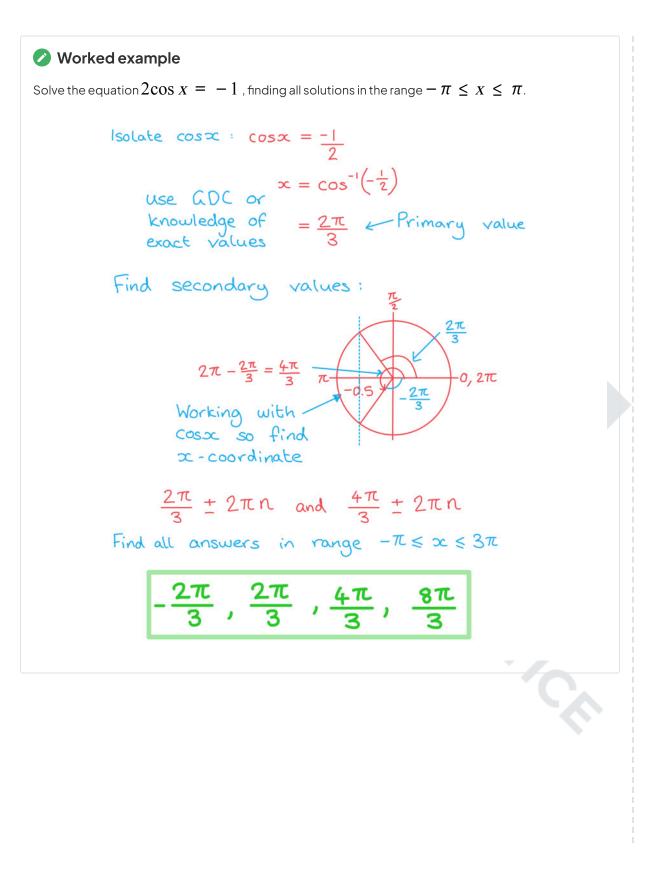
Trigonometric Equations: sinx = k

How are trigonometric equations solved?

- Trigonometric equations can have an infinite number of solutions
 - For an equation in sin or cos you can add 360° or 2π to each solution to find more solutions
 - For an equation in tan you can add 180° or π to each solution
- When solving a trigonometric equation you will be given a range of values within which you should find all the values
- Solving the equation normally and using the inverse function on your calculator or your knowledge of exact values will give you the primary value
- The **secondary values** can be found with the help of:
 - The unit circle
 - The graphs of trigonometric functions

How are trigonometric equations of the form sin x = k solved?

- It is a good idea to sketch the graph of the trigonometric function first
 - Use the given range of values as the domain for your graph
 - The intersections of the graph of the function and the line y = k will show you
 - The location of the solutions
 - The number of solutions
 - You will be able to use the symmetry properties of the graph to find all secondary values within the given range of values
- The method for finding secondary values are:
 - For the equation $\sin x = k$ the primary value is $x_1 = \sin^{-1} k$
 - A secondary value is $x_2 = 180^\circ \sin^{-1}k$
 - Then all values within the range can be found using $x_1 \pm 360n$ and $x_2 \pm 360n$ where $n \in \mathbb{N}$
 - For the equation $\cos x = k$ the primary value is $x_1 = \cos^{-1} k$
 - A secondary value is x₂ = cos⁻¹ k
 - Then all values within the range can be found using $x_1 \pm 360n$ and $x_2 \pm 360n$ where $n \in \mathbb{N}$
 - For the equation tan x = k the primary value is x = tan⁻¹k
 - All secondary values within the range can be found using x ± 180n where $n \in \mathbb{N}$



For more help, please visit www.exampaperspractice.co.uk

Trigonometric Equations: sin(ax + b) = k

How can I solve equations with transformations of trig functions?

- Trigonometric equations in the form sin(ax + b) can be solved in more than one way
- The easiest method is to consider the transformation of the angle as a substitution
 - For example let u = ax + b
- Transform the given interval for the solutions in the same way as the angle
 - For example if the given interval is $0^{\circ} \le x \le 360^{\circ}$ the new interval will be
 - $(a(0^\circ) + b) \le u \le (a(360^\circ) + b)$
- Solve the function to find the primary value for *u*
- Use either the unit circle or sketch the graph to find all the other solutions in the range for u
- Undo the substitution to convert all of the solutions back into the corresponding solutions for x
- Another method would be to sketch the transformation of the function
 - If you use this method then you will not need to use a substitution for the range of values

Reserved

Solve the equation $2\cos(2x - 30^\circ) = -1$, finding all solutions in the range $-360^\circ \le x \le 360^\circ$.

 $2\cos(2x - 30^{\circ}) = -1 - 360^{\circ} \le x \le 360^{\circ}$ Start by changing the range : $-750^{\circ} \le 2x - 30 \le 690^{\circ}$ Substitute $\theta = 2x - 30$: $2\cos\theta = -1 - 750^{\circ} \le \theta \le 690^{\circ}$ $\cos\theta = -\frac{1}{2}$ $\theta = \cos^{-1}(-\frac{1}{2}) = 120^{\circ}$ Primary $\theta = \cos^{-1}(-\frac{1}{2}) = 120^{\circ}$ Value -750^{\circ} - 720^{\circ} - \frac{1}{360} - \frac{1}{20} - \frac{690^{\circ}}{360^{\circ} - 120^{\circ}} - \frac{690^{\circ}}{220} - \frac{1}{10^{\circ}} - \frac{690^{\circ}}{360^{\circ} - 120^{\circ}} - \frac{690^{\circ}}{220} - \frac{1}{10^{\circ}} - \frac{690^{\circ}}{360^{\circ} - 120^{\circ}} - \frac{690^{\circ}}{220} - \frac{1}{10^{\circ}} - \frac{1}{360^{\circ}} - \frac{1}{20^{\circ}} - \frac{1}{360^{\circ}} - \frac{1}{20^{\circ}} - \frac{1}{360^{\circ}} - \frac{1}{20^{\circ}} - \frac{1}{20^{\circ}} - \frac{1}{360^{\circ}} - \frac{1}{20^{\circ}} - \frac{1}{20^{\circ}}

3.6.6 Quadratic Trigonometric Equations

Quadratic Trigonometric Equations

How are quadratic trigonometric equations solved?

- A quadratic trigonometric equation is one that includes either $\sin^2 heta$, $\cos^2 heta$ or $\tan^2 heta$
- Often the **identity** $\sin^2 \theta + \cos^2 \theta = 1$ can be used to rearrange the equation into a form that is possible to solve
 - If the equation involves both sine and cosine then the **Pythagorean identity** should be used to write the equation in terms of just one of these functions
- Solve the **quadratic equation** using your GDC, the quadratic equation or factorisation
 - This can be made easier by changing the function to a single letter
 - Such as changing $2\cos^2 \theta 3\cos \theta 1 = 0$ to $2c^2 3c 1 = 0$
- A quadratic can give up to two solutions
 - You must consider both solutions to see whether a real value exists
 - Remember that solutions for $\sin \theta = k$ and $\cos \theta = k$ only exist for $-1 \le k \le 1$
 - Solutions for $\tan \theta = k$ exist for all values of k
- Find all solutions within the given interval
 - There will often be more than two solutions for one quadratic equation
 - The best way to check the number of solutions is to sketch the graph of the function

ts Reserved

