Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

3.5 Voronoi Diagrams

3.5.1 Voronoi Diagrams

Drawing Voronoi Diagrams

What are Voronoi Diagrams?

- A Voronoidiagram shows the region containing the set of all points which are closer to one given site than to anyother site on the diagram
- A site is located at the coordinates of a specific place of interest on a Voronoi diagram
- It will be partitioned into a number of regions
- These regions are often called Voronoicells and will be poly gons
- There will be the same number of regions as sites on the diagram
- For example, if a city contains five parks a Vorono idiagram could be drawn forthat city dividing it into five regions based on their closest park
- The edges of each region will be the perpendicular bisector of two of the sites
- The edges may also be called boundaries
- The vertices of each region are the intersections of three of the se perpendicular bisectors
- The perpendicular bisectors of three individual points will always intersect at the po int that is equidistant from the three points

How are Voronoidiagrams drawn for three sites?

- You will not be expected to draw a Voronoidiagram from scratch, howeveryoushould understand how one is constructed
- First, the perpendicular bisector of the line segment joining each pair of sites will be constructed
- These should be constructed using dashed lines as only a part of each line will be needed for the final diagram
- The points of intersection of these perpendicular bisectors will create the vertices
- Each perpendicular bisectorshould stop whenit meets anotherperpendicular bisector
- Remove the part of the perpendicularbisector that is not in the regio n of the two sites
- No perpendicular bisector should cross over another
- This will form the regions, or cells

How are Voronoi diagrams drawn formore than threesites?

- It is challenging to draw a Voronoidiagram from scratch if it has more than three sites
- In this case it is easiest to draw the Voronoidiagram for three sites first and then add the next sites one by one following these steps
- STEP 1: The fourth site will be in one of the cells containing an existing site
- Draw the perpendicular bisector of the line segment between the se two sites
- STEP 2: Stop this new line at the point where it meets an existing boundary in the Voro noi diagram
- STEP 3: There will now be an existing edge in the region of the new site
- This should be shortened to meet the new boundary
- STEP 4: The fourth site will now be in the same cell as a different existing site
- Draw the perpendicular bisector of the line segment between these two sites
- This is the step you will most likely carry out in an exam
- Youmaybe asked to find the equation of a missing edge
- This will mean finding the equatio n of the perpendicular bisector between the two sites that are both within one region
- You maybe asked to add the location of a missing site to the Voro noidiagram
- This will mean using the given edge of one or two of the regions and finding the second site that would make this edge a perpendicular bisector
- Draw a perpendicular line from the site to the edge
- Check the distance of this line and then continue it on the other site of the ed ge for the same distance
- This will be the lo cation of your new site
- You may need to find the gradients of the edges you have and then use the negative reciprocal to find the gradient of the perpendicular bisector of the current and new site

(-) Exam Tip

- Make sure that you have a straight edge and an eras er with you in the exam so that any perpendicular bisectors that you draw are clear and anymistakes that are made can be erased
- If you are asked to adjust a given Voronoidiagram and a perpendicular bisector that needs to be removed or shortened, you can put a series of little lines along it to indicate that it is crossedout

Exam Papers Practice

Worked example

The Voro no i diagram below shows sites A, B, C and D.

a) Explain how you know that the Voronoi diagram is incomplete.

b) Find the equation of the line which would complete the Vo ron oi cell containing site A. Give yo ur answer in the form $a x+b y+d=0$ where $a, b, d \in \mathbb{Z}$.

Sites A and D are both in the same region so find the perpendicular bisector of the line segment connecting A and D.

$$
A:(1,2) \quad D:(6,0)
$$

Find the midpoint:

$$
M P=\left(\frac{1+6}{2}, \frac{2+0}{2}\right)=(3.5,1)
$$

$$
\begin{aligned}
& \text { gradient } A D \\
& m_{A D}^{\downarrow}=\frac{0-2}{6-1}=-\frac{2}{5} \therefore m_{\perp A D}=\frac{5}{2}
\end{aligned}
$$

Sub MP and $M_{\perp A D}$ into equation for a straight line:

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-1=\frac{5}{2}\left(x-\frac{7}{2}\right) \\
2 y-2=5 x-\frac{35}{2} \\
4 y-4=10 x-35 \\
10 x-4 y-31=0
\end{gathered}
$$

$$
y-1=\frac{5}{2}\left(x-\frac{7}{2}\right) \quad \begin{aligned}
& \text { multiply by } 2 \\
& \text { to remove the }
\end{aligned}
$$

$$
2 y-2=5 x-\frac{35}{2} \quad \begin{aligned}
& \text { fraction and } \\
& \text { rearrange }
\end{aligned}
$$

Copyright
© 2024 Exam Papers Practice

Interpreting Voronoi Diagrams

What is a Voronoidiagram used for?

- Voronoidiagrams are often used in land management to work out where the best location would be according to where sites are already situated
- Theycan show where to put something to make sure that it is
- Closest to a particularsite
- Closerto one site than another
- Equidistant from two or three specific sites
- As far as possible from anyo thersite

What do Ineed to know about Voronoidiagrams?

- You maybe asked to find the shortest distance from a point to its closest site
- Use Pythagoras'Theorem to find the distance between the given coordinate and the site in the same region as it
- If the coordinate is on an edge then there will be two sites equidistant from it
- You may be asked to find the point which is furthest from any of the sites
- This will be one of the vertices
- To choose which vertex look at which is the centre of the largest empty circle
- You maybe asked to estimate the success of a new site
- This is done bylooking at the data for the nearest site
- The prediction for the new site would be assumed to be the same
- This is called nearest neighbour interpolation

Exan papers practice
© 2024 Exam Papers Practice

Exam Papers Practice

Worked example

The Voronoi diagram below shows the four sites A, B, C and D with coordinates $(2,10),(14,14),(14$, $4)$, and $(6,2)$ respectively. 1 unit represents 10 km .

i) State which site a new business opening at the coordinate $(5,8)$ should look at to predict future sales.

Plot the point and Look for the site in the same region:

The new business is in the same region as site A.

Site A

Find the shortest distance from the point $(5,8)$ to its nearest site.

The point $(5,8)$ is closest to site A.
Formula for distance between two points:

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

sub coordinates:

$$
\begin{aligned}
& d=\sqrt{(2-5)^{2}+(10-8)^{2}} \\
&=\sqrt{(-3)^{2}+(2)^{2}}=\sqrt{13} \\
& \text { distance }=\sqrt{13} \times 10 \mathrm{~km}=36.055 \ldots \mathrm{~km}
\end{aligned}
$$

$$
\text { distance }=36.1 \mathrm{~km}(3 \mathrm{sf.})
$$

3.5.2 Toxic Waste Dump Problem

Toxic Waste Dump Problem

What is the toxic waste dump problem?

- The toxic waste dump problem is the name given to the general idea of finding the point on a Voronoidiagram which is furthest from any of the sites
- A site is the coordinates of a specific place of interest on Voronoidiagram
- It is given this name because of the common problem of finding a place to put a toxic waste dump that is equally far away from any inhabited area
- For example, if a province contains five towns a Voronoidiagram could be used to find the point within the province which is furthest from each town
- The toxic waste dump problem is more of anidea than a specific problem
- The same concept could be applied to other contexts such as
- Finding a position for a new supermarket that is equally far from all competitors
- Find ing a place to plant a new tree that is equally far from other trees competing for water resources
- Find ing the quietest place to enjoy a picnic that is equally far from other no isy groups of people
- Note that the term equally f ar is used in all of the above examples

How is a Voronoidiagram used to find the furthest point from anysite?

- Within any Voronoi diagram the furthest point from any site will always be either
- one of the cellvertices, or
- somewhere on a bo und ary of the diagram
- In an IB exam, the solutio n will always be one of the cell vertices
- To find the furthest point you will need to consider each of the cell vertices separately and find which one is furthest from all of the sites
- This is do ne by constructing the largest empty circle

What is the largest empty circle?

- The largest empty circle is the largest possible circle constructed on a Vo ro noi diagram that contains no sites
- The centre of the circle will be one of the vertices of a cell or region
- The vertices of each region are the intersections of the boundaries
- The radius of the circle will be the distance from the vertex to the closest site
- The closest site will be onthe circumference
- Use Pythagoras'Theoremto find the distance
- There may be a scale to convert the distance found on the Voronoidiagram into a distance in real life
- For example if the scale is 1 unit represents 5 km then 5 units represents 25 km

(-) Exam Tip

- The solution to the toxic waste dump will always be one of the points of intersection between the perpendicular bisectors, so you need to know the coordinates of these points
- Remember that you can use your GDC to solve a pair of the simultaneous equations quickly if youknow the equations of two of the perpendicular bisectors that intersect at that point

Worked example

The Voronoidiagram below shows four cities at the sites A, B, C and D. The coordinates of the points X and Y are $\left(\frac{5}{4}, \frac{7}{4}\right)$ and $\left(\frac{5}{2}, \frac{3}{2}\right)$ respectively.

Determine the optimal position where a toxic waste site could be located and, given that 1 unit represents 50 km , find the distance from this point to its nearest city.

Exam Papers Practice

The optimal position would be at the point x or y Draw the Largest possible circle centred at X and Y.

$$
\begin{aligned}
& \text { The blue circle is larger } \\
& \text { than the red so the }
\end{aligned}
$$

distance $=2.8504 \ldots \times 50 \mathrm{~km}=142.52 \ldots \mathrm{~km}$
distance $=143 \mathrm{~km}$ (3s.f.)

$$
\begin{aligned}
& \text { Formula for distance between two points: } \\
& d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \quad X:\left(\frac{5}{4}, \frac{7}{4}\right) \\
& \text { sub coordinates } \\
& d=\sqrt{\left(\frac{5}{4}-3\right)^{2}+\left(\frac{7}{4}-4\right)^{2}}=\sqrt{\left(\frac{7}{4}\right)^{2}+\left(\frac{9}{4}\right)^{2}}=\sqrt{\frac{65}{8}} \\
& =2.8504 \ldots \text { units }
\end{aligned}
$$

