钲

EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

3.5 Trigonometric Functions \& Graphs

3.5.1 Graphs of Trigonome tric Functions

Graphs of Trigonometric Functions

What are the graphs of trigonometric functions?

- The trigo no metric functions \sin , \cos and tan all have special perio dic graphs
- You'll need to know their properties and how to sketch them for a given do main in either degrees or radians
- Sketching the trigo nometric graphs can help to
- Solve trigo nometric equations and find all solutions
- Understand transformations of trigonometric functions

What are the properties of the graphs of $\sin x$ and $\cos x$?

- The graphs of $\sin x$ and $\cos x$ are both perio dic
- Theyrepeat every 360° (2π radians)
- The angle will always be on the x-axis
- Either in degrees orradians
- The graphs of $\sin x$ and $\cos x$ are always in the range $-1 \leq y \leq 1$
- Domain: $\{\boldsymbol{X} \mid \boldsymbol{X} \in \mathbb{R}\}$
- Range: $\{\boldsymbol{y} \mid-1 \leq \boldsymbol{y} \leq 1\}$
- The graphs of $\sin x$ and $\cos x$ are identical however one is a translation of the other
- $\sin x$ passes through the origin
- cos xpasses through $(0,1)$
- The amplitude of the graphs of $\sin x$ and $\cos x$ is 1

What are the properties of the graph of $\tan x$?

- The graph of tan x is periodic
- It repeats every 180° (π radians)
- The angle will always be on the x-axis
- Either in degrees or radians
- The graph of tan x is undefined at the points $\pm 90^{\circ}, \pm 270^{\circ}$ etc
- There are asymptotes at these points on the graph
- In radians this is at the points $\pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}$ etc
- The range of the graph of $\tan x$ is
- Domain: $\left\{\boldsymbol{x} \left\lvert\, \boldsymbol{x} \neq \frac{\boldsymbol{\pi}}{2}+\boldsymbol{k} \boldsymbol{\pi}\right., \boldsymbol{k} \in \mathbb{Z}\right\}$
- Range: $\{\boldsymbol{y} \mid \boldsymbol{y} \in \mathbb{R}\}$

$$
y=\sin x \quad \text { AND } y=\cos x
$$

$\operatorname{Sin} x$ AND Cos x ARE ALWAYS	$\operatorname{Sin} x$ PASSES THROUGH THE ORIGIN
IN THE RANGE -1 TO 1	$\operatorname{Cos} x$ PASSES THROUGH 1


```
Sin}x\mathrm{ AND Cos }
ARE PERIODIC
REPEATING EVERY 360
```

$$
\begin{aligned}
& \text { Sin } x \text { HAS ROTATIONAL SYMMETRY ABOUT } \\
& \text { THE ORIGIN SO } \sin (-x)=-\sin (x) \\
& \text { Cos } x \text { IS SYMMETRICAL THROUGH THE } y \text {-AXIS } \\
& \text { SO } \cos (-x)=\cos (x)
\end{aligned}
$$

$$
y=\tan x
$$


```
Tanx IS PERIODIC
REPEATING EVERY 180
```


How dolsketch trigonometric graphs?

- You mayneed to sketch a trigo nometric graph so you will need to remember the keyfeatures of eachone
- The following steps may help you sketch a trigonometric graph
- STEP 1: Check whetheryou should be working in degrees or radians
- Youshould check the domain given for this
- If you see π in the given domain then you should work in radians
- STEP 2: Label the x-axis in multiples of 90°
- This will be multiples of $\frac{\pi}{2}$ if you are working in radians
- Make sure you cover the whole do main on the x-axis
- STEP 3: Label the y-axis
- The range for the y-axis will be $-1 \leq y \leq 1$ for sin orcos
- For tan you will not need any specific points on the y-axis
- STEP 4: Draw the graph
- Knowing exact values will help with this, such as remembering that $\sin (0)=0$ and $\cos (0)=1$
- Mark the important points on the axis first
- If you are drawing the graph of tan xput the asymptotes in first
- If you are drawing sin x or cos x mark in where the maximum and minimum po ints will be
- Try to keep the symmetry and rotational symmetry as you sketch, as this will help when using the graph to find solutions

O Exam Tip

- Sketch all three trig graphs on yo ur exam paper so you can refer to them as many times as you need to!

Worked example

Sketch the graphs of $y=\cos \theta$ and $y=\tan \theta$ on the same set of axes in the interval $-\pi \leq \theta \leq 2 \pi$. Clearly mark the key features of both graphs.

Page 3 of 12

Using Trigonometric Graphs

Howcan luse a trigonometric graph to find extra solutions?

- Your calculator will only give you the first solution to a problem such as $\sin ^{-1}(0.5)$
- This solution is called the primary value
- However, due to the periodic nature of the trig functions there could be an infinite number of solutions
- Further solutions are called the secondary values
- This is why you will be given a domain (interval) in which your solutions should be found
- This could either be in degrees orin radians
- If you see π or some multiple of π then you must work in radians
- The following steps will help you use the trigonometric graphs to find secondary values
- STEP 1: Sketch the graph for the given function and interval
- Check whetheryou should be working in degrees or radians and label the axes with the keyvalues
- STEP 2: Draw a ho rizontal line going through the y-axis at the point you are trying to find the values for
- Forexample if you are looking for the solutions to $\sin ^{-1}(-0.5)$ then draw the horizontal line going through the y-axis at -0.5
- The number of times this line cuts the graph is the number of solutions within the given interval
- STEP 3: Find the primary value and mark it on the graph
- This will either be an exact value and you should know it
- Oryou will be able to use your calculator to find it
- STEP 4: Use the symmetry of the graph to find all the solutions in the interval by ad ding or subtracting from the keyvalues on the graph

What patterns can be seen from the graphs of trigonometric functions?

- The graph of $\sin x$ has rotatio nal symmetry abo ut the origin
- So $\sin (-x)=-\sin (x)$
- $\sin (x)=\sin \left(180^{\circ}-x\right) \operatorname{or} \sin (\pi-x)$
- The graph of cos x has reflectional symmetry abo ut the y-axis
- So $\cos (-x)=\cos (x)$
- $\cos (x)=\cos \left(360^{\circ}-x\right) \operatorname{orcos}(2 \pi-x)$
- The graph of $\tan x$ repeats every $180^{\circ}(\pi$ radians $)$
- So $\tan (x)=\tan \left(x \pm 180^{\circ}\right)$ ortan $(x \pm \pi)$
- The graphs of $\sin x$ and $\cos x$ repeat every $360^{\circ}(2 \pi$ radians $)$
- So $\sin (x)=\sin \left(x \pm 360^{\circ}\right)$ orsin $(x \pm 2 \pi)$
- $\cos (x)=\cos \left(x \pm 360^{\circ}\right) \operatorname{orcos}(x \pm 2 \pi)$

- Exam Tip

- Take care to always check what the interval for the angle is that the question is focused on

Worked example

One solution to $\cos x=0.5$ is 60°. Find all the other solutions in the range $-360^{\circ} \leq x \leq 360^{\circ}$.

$$
\begin{aligned}
& \text { Draw the graph of } \cos x: \begin{array}{l}
\text { The horizontal line at } \\
y=0.5 \text { shows that } \\
\text { there are } 4 \text { solutions }
\end{array} \\
& \text { Solutions are: } 60^{\circ}, 360^{\circ}-60^{\circ},-60^{\circ},-360^{\circ}+60^{\circ} \\
& -60^{\circ},-300^{\circ}, 60^{\circ}, 300^{\circ}
\end{aligned}
$$

3.5.2 Transformations of Trigonometric Functions

Transformations of Trigonometric Functions

What transformations of trigonometric functions do Ineed to know?

- As with other graphs of functions, trigo nometric graphs can be transformed through translations, stretches and reflections
- Translations can be either horizontal (parallel to the x-axis) orvertical (parallel to the y-axis)
- Forthe function $\mathbf{y}=\boldsymbol{\operatorname { s i n }}(\mathbf{x})$
- Avertical translation of a units in the positive direction (up) is denoted by $y=\sin (x)+a$
- A vertical translatio n of aunits in the negative direction (down) is denoted by $y=\sin (x)-a$
- A horizont al translation in the positive direction(right) is denoted by $y=\sin (x-a)$
- A horizont al translation in the negative direction (left) is denoted by $\mathbf{y}=\boldsymbol{\operatorname { s i n }}(\mathbf{x}+\boldsymbol{a})$
- Stretches can be either horizontal (parallel to the x-axis) orvertical (parallel to the y-axis)
- Forthe function $\mathbf{y}=\boldsymbol{\operatorname { s i n }}(\mathbf{x})$
- A vertical stretch of a factor aunits is denoted by $\mathbf{y}=\boldsymbol{a} \sin (x)$
- A horizontal stretch of a factor aunits is denoted by $y=\sin \left(\frac{X}{a}\right)$
- Reflections can be either across the x-axis or across the y-axis
- Forthe function $\mathbf{y}=\boldsymbol{\operatorname { s i n }}(\mathbf{x})$
- Areflectionacross the x-axis is denoted by $\mathbf{y}=-\boldsymbol{\operatorname { s i n }}(\mathbf{x})$
- Areflectionacross the y-axis is denoted by $\mathbf{y}=\boldsymbol{\operatorname { s i n }}(-x)$

What combined transformations are there?

- Stretches in the horizontal and vertical direction are often combined
- The functions $\boldsymbol{a} \boldsymbol{\operatorname { s i n }}(\mathbf{b x})$ and $\boldsymbol{a} \boldsymbol{\operatorname { c o s }}(\boldsymbol{b x})$ have the follo wing properties:
- The amplitude of the graph is $|a|$
- The period of the graph is $\frac{360}{b}{ }^{\circ}$ (or $\frac{2 \pi}{b}$ rad)
- Translations in both directions could also be combined with the stretches
- The functions $\boldsymbol{a} \sin (\boldsymbol{b}(\boldsymbol{x}-\boldsymbol{c}))+\boldsymbol{d}$ and $\boldsymbol{a} \cos (\boldsymbol{b}(\boldsymbol{x}-\boldsymbol{c}))+\boldsymbol{d}$ have the follo wing pro perties:
- The amplitude of the graph is $|a|$
- The period of the graph is $\frac{360}{b}$ (or $\frac{2 \pi}{b}$)
- The translation in the horizontal direction is c
- The translation in the vertical direction is d
- drepresents the principal axis (the line that the function fluctuates about)
- The function $\boldsymbol{a} \tan (\boldsymbol{b}(\boldsymbol{x}-\boldsymbol{c}))+\boldsymbol{d}$ has the following pro perties:
- The amplitude of the graph does not exist
- The period of the graph is $\frac{180}{b}$ (or $\frac{2 \pi}{b}$)
- The translation in the horizontal direction is c
- The translation in the vertical direction(principal axis) is d

Howdolsketchtransformations of trigonometric functions?

- Sketch the graph of the original function first
- Carry out each transformation separately
- The orderin whichyou carry out the transformations is important
- Given the form $\boldsymbol{y}=\boldsymbol{a s i n}(\boldsymbol{b}(\boldsymbol{x}-\boldsymbol{c}))+\boldsymbol{d c}$ arry out anystretches first, translations next and reflections last
- If the function is written in the form $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{\operatorname { s i n }}(\boldsymbol{b x} \boldsymbol{- b} \boldsymbol{b})+\boldsymbol{d}$ factorise out the coefficient of x before carrying out any transformations
- Use a verylight pencil to mark where the graph has moved foreach transformation
- It is a good idea to mark in the principal axis the lines corresponding to the maximum and minimum points first
- The principal axis will be the line $\boldsymbol{y}=\boldsymbol{d}$
- The maximum points will be on the line $\boldsymbol{y}=\boldsymbol{d}+\boldsymbol{a}$
- The minimum points will be on the line $\boldsymbol{y}=\boldsymbol{d} \boldsymbol{- a}$
- Sketchin the new transformed graph
- Check it is correct bylooking at some keypoints from the exact values

O Exam Tip

- Be sure to apply transformations in the correct order-applying them in the wrong order can produce an incorrect transformation
- When you sketch a transformed graph, indicate the new coordinates of anypoints that are marked on the original graph
- Tryto indicate the coordinates of points where the transformed graph intersects the coordinate axes (although if you don't have the equation of the original function this may not be possible)
- If the graph has asymptotes, don't forget to sketch the asymptotes of the transformed graph as well

Exam Papers Practice

Worked example

Sketch the graph of $y=2 \sin \left(3\left(x-\frac{\pi}{4}\right)\right)-1$ for the interval $-2 \pi \leq x \leq 2 \pi$. State the amplitude, period and principal axis of the function.

$$
\begin{aligned}
& \qquad \text { Period }=\frac{2 \pi}{3} \\
& y=2 \sin \left(3^{\downarrow}\left(x-\frac{\pi}{4}\right)\right)-1 \\
& \text { amplitude }=2 \quad \text { Principal axis }=-1 \\
& \therefore \max -\min =4 \quad \text { horizontal shift }
\end{aligned}
$$

$$
\begin{array}{r}
\text { amplitude : } 2 \\
\text { period : } \\
\text { prineipal axis : } y=-1
\end{array}
$$

3.5.3 Modelling with Trigonometric Functions

Modelling with Trigonometric Functions

What can be modelled with trigonometric functions?

- Anything that oscillates (fluctuates periodically) can be modelled using a trigonometric function
- Normally some transformation of the sine orcosine function
- Examples include:
- $D(t)$ is the depth of waterat a shore thours after midnight
- $T(d)$ is the temperature of a city d days after the 1st January
- $H(t)$ is vertical height above ground of a person t seconds after entering a Ferris wheel
- Notice that the x-axis will not always contain an angle
- In the examples above time or number of days would be on the x-axis
- Depth of the water, temperature orvertical height would be on the y-axis

What are the parameters of trigonometric models?

- A trigo nometric model could be of the form
- $f(x)=a \sin (b(x-c))+d$
- $f(x)=a \cos (b(x-c))+d$
- $f(x)=a \tan (b(x-c))+d$
- The a represents the amplitude of the function
- The bigger the value of athe bigger the range of values of the function
- Forthe function $a \tan (b(x-c))+d$ the amplitude is undefined
- The b determines the period of the function
- Period $=\frac{360^{\circ}}{b}=\frac{2 \pi}{b}$
- The bigger the value of b the quicker the function repeats a cycle
- The crepresents the horizontal shift
- The drepresents the vertical shift
- This is the principal axis

What are possible limitations of a trigonometric model?

- The amplitude is the same foreach cycle
- In real-life this might not be the case
- The function might get closerto the value of dovertime
- The period is the same for each cycle
- In real-life this might not be the case
- The time to complete a cycle might change over time

(-) Exam Tip

- The variable in the se questions is often \boldsymbol{t} for time.
- Read the question carefully to make sure youknow what you are being asked to solve.

Worked example

The waterdepth, D, in metres, at a port can be modelled by the function

$$
D(t)=3 \sin \left(15^{\circ}(t-2)\right)+12, \quad 0 \leq t<24
$$

where t is the elapsed time, in hours, since midnight.
a) Write down the depth of the water at midnight.

Substitute $t=0$ for midnight:

$$
D(0)=3 \sin (15(0-2))+12
$$

$=3 \sin (-30)+12$

$=3\left(-\frac{1}{2}\right)+12=10.5$

$$
D=10.5 \mathrm{~m}
$$

b) Find the minimum water depth and the number of hours after midnight that this depth occurs.

Exam Papers Practice

$$
\begin{aligned}
& D(t)=3 \sin (15(t-2))+12_{\text {principal axis }} \\
& \text { amplitude } \\
& \text { Principal axis is at } y=12 \\
& \text { amplitude is } 3 \text { minimum }=12-3=9 \\
& \text { Let } D(t)=9 \\
& 3 \sin (15(t-2))+12=9 \\
& 3 \sin (15(t-2))=-3 \\
& \sin (15(t-2))=-1 \\
& 15(t-2)=-90 \\
& t=-4+24 n \\
& \begin{array}{l}
\text { cycle repeats every } \\
24 \text { hours }
\end{array} \\
& \xrightarrow[(-4,9)]{(20,9)} \\
& \text { Minimum }=9 \mathrm{~m} \\
& 20 \text { hours after midnight }
\end{aligned}
$$

c) Calculate how long the water depth is at least 13.5 m each day.

Let $D(t)=13.5$

$$
\begin{aligned}
3 \sin (15(t-2))+12 & =13.5 \\
3 \sin (15(t-2)) & =1.5 \\
\sin (15(t-2)) & =0.5 \\
15(t-2) & =30
\end{aligned}
$$

$$
t=4+24 n
$$

cycle repeats every

$$
24 \text { hours }
$$

Use symmetry and properties of the graph to find secondary value of t :

$$
t=4 \text { and } t=12
$$

Find the difference between the times. $12-4=8$
8 hours

