3.4 Further Trigonometry Question Paper

Course	DP IB Maths	
Section	3. Geometry \& Trigonometry	
Topic	3.4 Further Trigonometry	
Difficulty	Medium	

To be used by all students preparing for DP IB Maths AA SL Students of other boards may also find this useful

Question 1

Complete the table.

Degrees	Radians	sin	cos	tan
	$\frac{\pi}{6}$		$\frac{\sqrt{3}}{2}$	
45°			$\frac{1}{\sqrt{2}}$	
60°	$\frac{\pi}{3}$	$\frac{2 \pi}{3}$	$\frac{\sqrt{3}}{2}$	
270°				

Question 2

Given that $\sin \theta=\frac{3}{5}$, where $\frac{\pi}{2}<\theta<\pi$, find the possible values of $\cos \theta$ and $\tan \theta$.

Question 3

The following triangle shows triangle ABC , with $\mathrm{AB}=3 a, \mathrm{BC}=a$ and $\mathrm{AC}=7$.

Given that $\cos \mathrm{ABC}=\frac{1}{2}$, find the area of the triangle. Give your answer in the form $\frac{p \sqrt{3}}{r}$, where $p, q \in \mathbb{R}$.

Question 4a

The following triangle shows triangle ABC , with $\mathrm{AB}=15, \mathrm{AC}=20, \mathrm{BC}=x$.

Given that $\cos B \widehat{A} C=\frac{2}{3}$, find the value of $\sin B \widehat{A C}$.

Exam

Question 4b

Find the exact area of triangle ABC .

Exam Papers Practice

Question 4c

By finding the value of X, show that triangle $A B C$ is is osceles.

Question 5

A sector of a circle, $O P Q$, is such that it has radius 3.4 cm and the angle at its centre, O, is $\frac{3 \pi}{4}$ radians.
(i)

Find the length of the arc $P Q$.
(ii)

Find the area of the sector $O P Q$.

Question 6

Two non-congruent triangles both have sides $\mathrm{AB}=5.3 \mathrm{~cm}, \mathrm{BC}=6.4 \mathrm{~cm}$ and $\mathrm{A} \widehat{\mathrm{C}}=38^{\circ}$.
Show that the angle B $\hat{A} C$ for one of the triangles is 132°, to 3 significant figures.
Find the angle ABC for the other triangle.

Question 7

A right-angled triangle has hypotenuse 8 cm . One of its other sides is 5 cm .
Find exact values for $\sin \theta, \cos \theta$ and $\tan \theta$, where is the smallest angle in the triangle.
Practice

Question 8a

The diagram below shows the sector of a circle $O A B$.

(ii)

Find the area of the triangle $O A B$, giving your answerto 3 significant figures.
(iii)

Find the area of the shaded segment, giving your answer to 3 significant figures.
Exam Papers Practicem

Question 8b

(i)

Find the length of the $\operatorname{arc} A B$.
(ii)

Find the perimeter of the sector $O A B$.

Question 9

The canopy of a parachute and the outermost connecting cords form a sector of a circle as shown in the diagram below, with the parachutist modelled as a particle at point O.

The area of the sector $O A B$ is $\frac{81 \pi}{200} \mathrm{~m}^{2}$.
Find the length of one of the connecting cords on the parachute.

Question 10

A plastic puzzle piece is in the form of a prism with a cross-section that is the sector of a circle, as shown in the diagram below. The radius of the sector is 8 cm , and the angle at the centre is 1.2 radians.

The height of the puzzle piece is 2 cm .

(i)

Work out the area of the cross-section.

Practice
(ii)

Hence, or otherwise, work out the volume of the puzzle piece.

Question 11a

The circle sector $O A B$ is shown in the diagram below.

The angle at the centre is $\frac{\pi}{3}$ radians, and the line segments $O C$ and $B C$ have lengths of 8 cm and $p \mathrm{~cm}$ respectively.
Additionally, $C D$ is parallel to $A B$, so that $A D=B C$ and $O D=O C$.

Show that the area of the sector $O A B$ is $\frac{\pi}{6}(p+8)^{2} \mathrm{~cm}^{2}$.

Question 11b

Show that the area of the triangle $O C D$ is $16 \sqrt{3} \mathrm{~cm}^{2}$.
[2 marks]

Question 11c

Given that the area of the shaded shape $A B C D$ is $\left(\frac{50 \pi}{3}-16 \sqrt{3}\right) \mathrm{cm}^{2}$, find the value of p.

