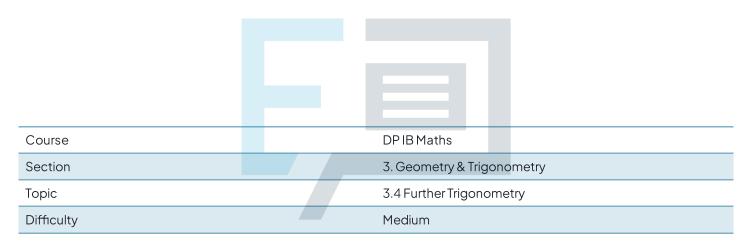


3.4 Further Trigonometry

Mark Schemes



Exam Papers Practice

To be used by all students preparing for DP IB Maths AA SL Students of other boards may also find this useful

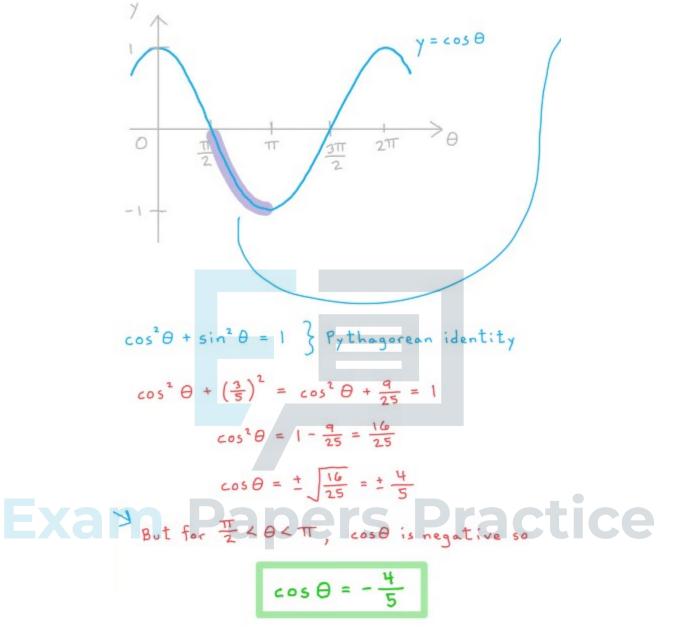
Complete the table.

Question 1

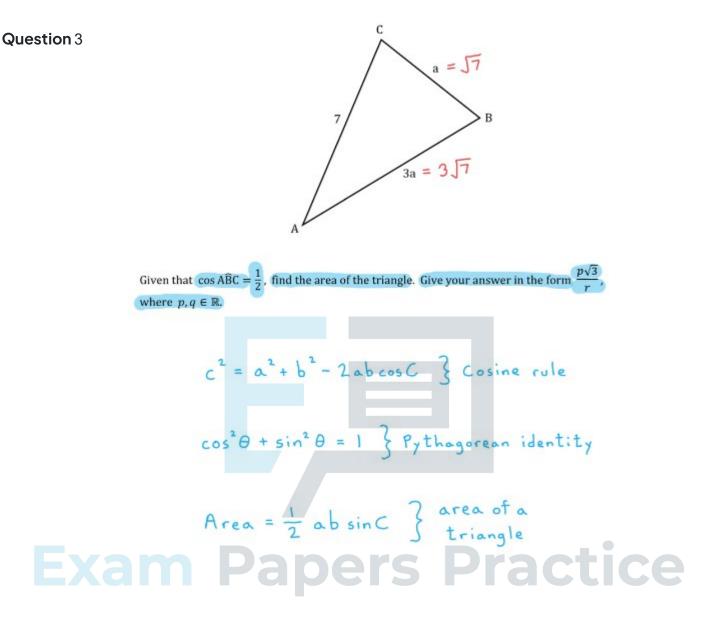
Degrees	Radians	sin	cos	tan
30°	$\frac{\pi}{6}$	12	$\frac{\sqrt{3}}{2}$	-
45°	바	古	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{\pi}{3}$	57	1/2	13
120°	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	- 12	-53
270°	311	- 1	0	\searrow

Notes

1)
$$\frac{1}{J2} = \frac{J2}{2}$$
 and $\frac{1}{J3} = \frac{J3}{3}$
2) The tangent of 270° (like the tangent
of every multiple of 90°) is undefined.
Sometimes '00' or '±00' is used to
indicate this.



$$\tan \theta = \frac{\sin \theta}{\cos \theta} \quad \left\{ \begin{array}{l} \text{Identity for } \tan \theta \\ \tan \theta = \frac{3/5}{-4/5} = \frac{3}{5} \times \left(-\frac{5}{4}\right) \end{array} \right\}$$



Use cosine rule to find value of a $7^{2} = (a)^{2} + (3a)^{2} - 2(a)(3a)(\frac{1}{2})$ $49 = a^{2} + 9a^{2} - 3a^{2}$ $7a^{2} = 49 \implies a^{2} = 7 \implies a = \sqrt{7}$

Use identity to find sin ABC

$$\sin ABC = \sqrt{1 - (\frac{1}{2})^2} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$

Now use formula to find area of triangle
Area =
$$\frac{1}{2}(J7)(3J7)(\frac{J3}{2})$$

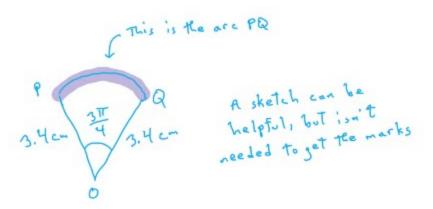
= $\frac{1}{2}(21)(\frac{J3}{2}) = \frac{21J3}{4}$

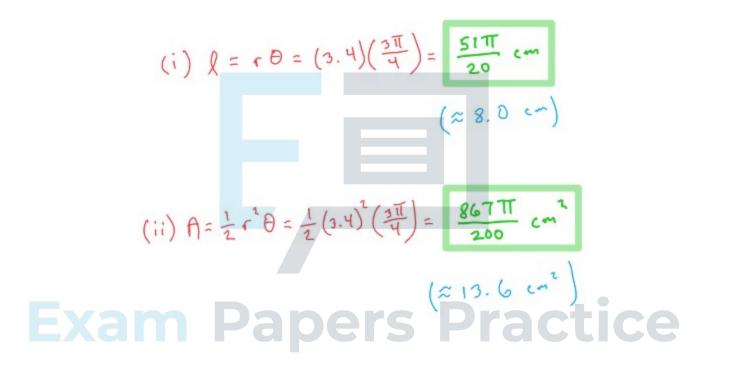
a)
$$\cos^2\theta + \sin^2\theta = 1$$
 } Pythagorean identity
Use identity to find sin BAC
 $\left(\frac{1}{3}\right)^2 + \sin^2 BAC = 1$
 $\sin^2 BAC + \frac{4}{7} = 1$
 $\sin^2 BAC = 1 - \frac{4}{7} = \frac{5}{7}$
 $\sin BAC = \sqrt{\frac{5}{7}}$
b) Area = $\frac{1}{2}$ ab sinc } area of a
triangle
Area = $\frac{1}{2}$ (15)(20) $\left(\frac{15}{3}\right)$
 $= \frac{1}{2}(300)\left(\frac{15}{3}\right)$
 $= \frac{300\sqrt{5}}{6} = 50\sqrt{5}$
Area = $50\sqrt{5}$ units²

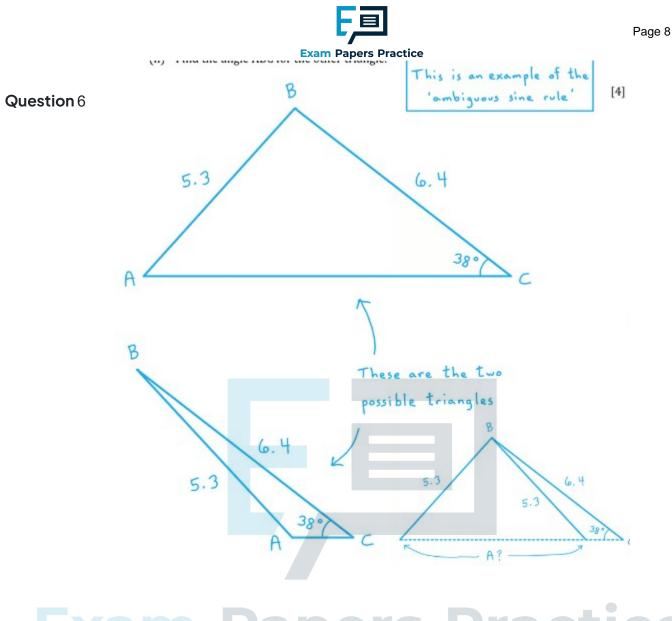
c)
$$c^{2} = a^{2} + b^{2} - 2abcosC$$
 } Cosine rule
Use cosine rule to find value of x
 $\chi^{2} = (15)^{2} + (20)^{2} - 2(15)(20)(\frac{2}{3})$
 $= 225 + 400 - 600(\frac{2}{3})$
 $= 225 + 400 - 400 = 225$
 $\implies \chi = \sqrt{225} = 15$

Question 5 **Papers Practice**

<u>Arc length</u>: $l = r\theta$ <u>Area of sector</u>: $A = \frac{1}{2}r^2\theta$ $\begin{cases} \theta \text{ must be} \\ \text{ in radians} \end{cases}$







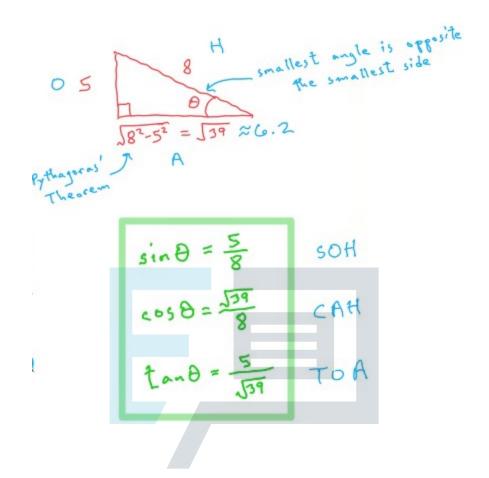
(i)
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
 Sine rule
 $\frac{6.4}{\sin BAC} = \frac{5.3}{\sin 38^{\circ}} \implies \sin BAC = \frac{6.4}{5.3} \sin 38^{\circ}$
 $BAC = \sin^{-1} \left(\frac{6.4}{5.3} \sin 38^{\circ}\right) = 48.025304...^{\circ}$
 $\sin \theta = \sin (180^{\circ} - \theta)$ [Property of sine function]*
or $BAC = 180 - \sin^{-1} \left(\frac{6.4}{5.3} \sin 38^{\circ}\right) = 131.974695...^{\circ}$
 $BAC = 132^{\circ} (3 \text{ s.f.})$
* This can be seen in the symmetry of the sine graph.

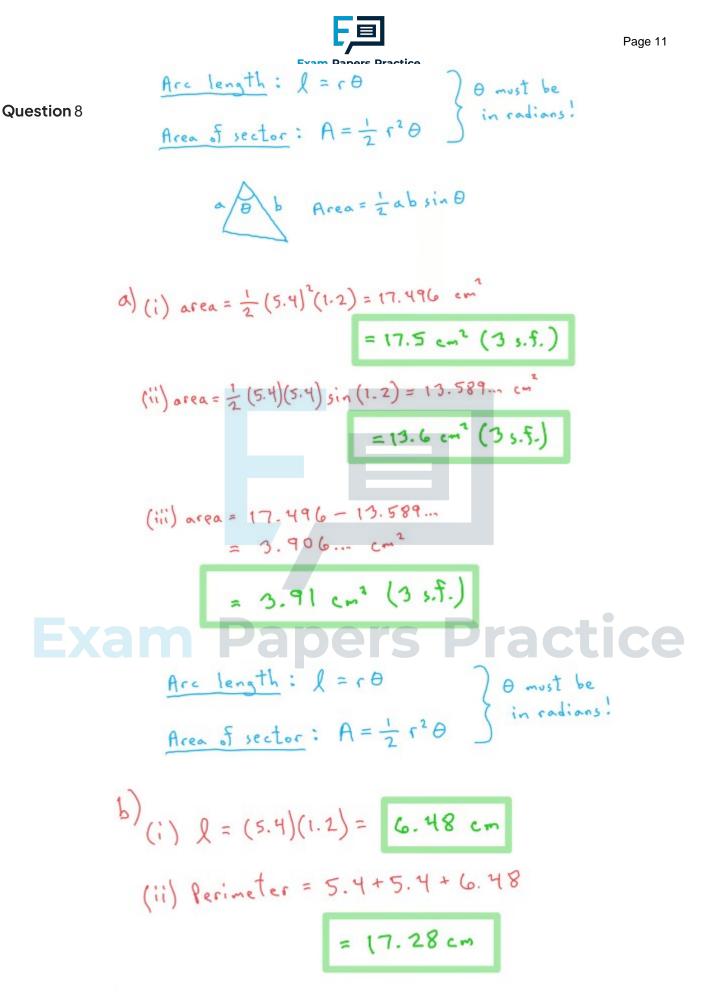
(ii) In the other triangle,

$$BAC = \sin^{-1}\left(\frac{6.4}{5.3}\sin 38^\circ\right) = 48.025304...^\circ$$

Therefore

$$\widehat{ABC} = 180 - 38 - \sin^{-1}\left(\frac{6.4}{5.3}\sin 38^{\circ}\right) = 93.974695...^{\circ}$$





For more help visit our website www.exampaperspractice.co.uk

Arc length:
$$l = r\theta$$

Area of sector: $A = \frac{1}{2}r^2\theta$ $\begin{cases} \theta \text{ must be} \\ \text{ in radians} \end{cases}$

$$area = \frac{81\pi}{200} = \frac{1}{2}r^2\left(\frac{\pi}{4}\right)$$

$$\frac{\pi}{8}r^{2} = \frac{81\pi}{200}$$

$$\frac{1}{8}r^{2} = \frac{81}{200}$$

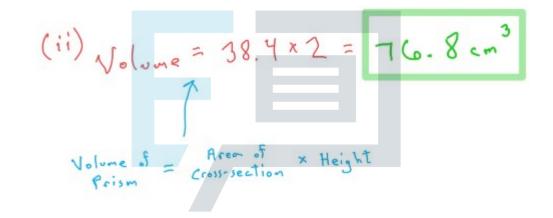
$$r^{3} = \frac{81}{25}$$

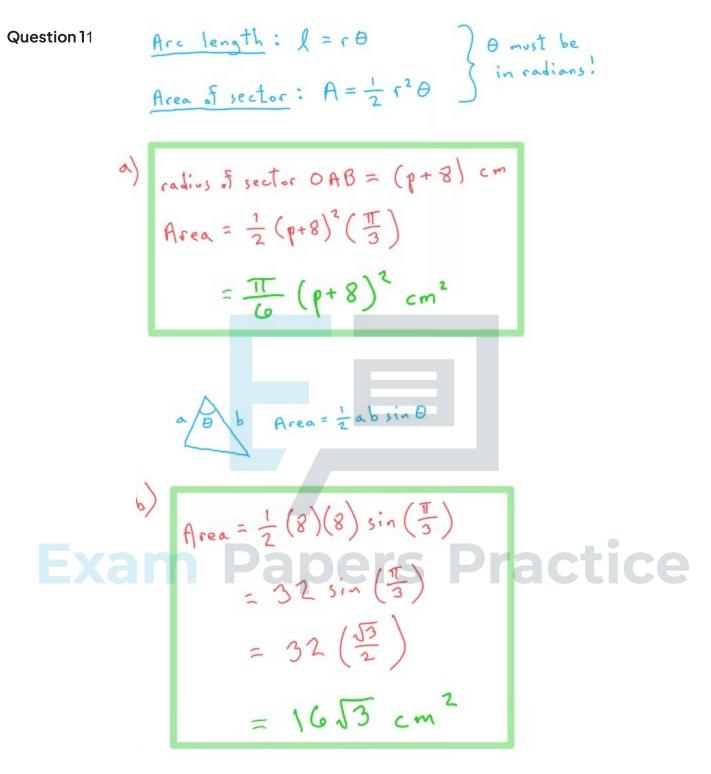
$$r^{3} = \frac{81}{25}$$

Example of connecting conductice
is
$$\frac{9}{5}$$
 m (1.8 m)

Area of sector:
$$A = \frac{1}{2}r^2\theta$$
 } θ must be in radians!

(i) Area =
$$\frac{1}{2}(8)^{2}(1.2) = 38.4 \text{ cm}^{2}$$





c) area of = area of = area of shape ABCD = sector DAB = triangle DCD
=
$$\frac{T}{G}(p+8)^2 - 16\sqrt{3}$$

Therefore
 $\frac{T}{G}(p+8)^2 - 16\sqrt{3} = \frac{50\pi}{3} - 16\sqrt{3}$
 $\frac{T}{G}(p+8)^2 = \frac{50\pi}{3}$
 $\frac{1}{G}(p+8)^2 = \frac{50}{3}$
 $\frac{1}{G}(p+8)^2 = \frac{50}{3}$
 $(p+8)^2 = 100$
 $p+8 = \pm 10$
because it is the length of the