Mark schemes

(a) 4 :

1
(b) 2.68(6).

If answer incorrect:
$\Sigma n(n-1)=242=1$ mark
$N(N-1)=650=1$ mark
(c) 1. Take more samples and find mean;2. Method for randomised samples described. Allow larger area $=1$ mark
(a) Species richness measures only number of (different) species / does not measure number

(b) Trees vary in height.
(c) 1. Index for canopy is 3.73;
2. Index for understorey is 3.30 ;
3. Index in canopy is 1.13 times bigger;

If either or both indices incorrect, allow correct calculation from student's values.
(d) 1. For Zaretis itys, difference in distribution is probably due to chance / probability of being due to chance is more than 5%;
2. For all species other than Zaretis itys, difference in distribution is (highly) unlikely to be due to chance;
3. Because $P<0.001$ which is highly significant / is much lower than 5%.
[8] (a) 1. Kingdom, Phylum, Class, Order, Family;
2. Luscinia svecica.

1 mark for each correct column

Allow Genus and Species if both placed in box for species but not if both placed in genus box
(b) Number of different alleles of each gene.

Accept number of different base sequences (found) in each gene
(c) 1. Has greater proportion of genes / percentage of genes showing diversity;2. Percentage is 35% compared with 28% / proportion is 0.35 compared with 0.28 .

Allow correct figures that are not rounded up, i.e., 34.9% / 0.349
and $27.8 \% ~ / ~ 0.278$
[5] (a) 1. Draw grid over (map of) area;
2. Select squares / coordinates at random.
(b) 1. No emigration / immigration;
2. No losses to predation;
3. Marking does not affect survival;
4. Birth rate and death rate equal;
5. (In this case) all belong to one population.
(c) 1. Only glows brightly with UV, so doesn't make insects more visible;
2. So doesn't affect / increase predation;

OR

1. Glows brightly with UV marking visible; 2.

So makes it easy to pick out labelled insects.
(d) 10130 .

Tolerance of ± 1

$$
N=\frac{M \times C}{R}=1 \text { marks }
$$

(e) 1. Scientists removed large numbers of insects (which were not returned) fromsame area / same population;
2. Affecting ratio of marked to unmarked.
[10] (a) 14;
(b) Number (of individuals) in each species (of dung beetle); Accept: population of each species.
(c) 1. No overlap in standard deviations;

Accept: no overlap in error bars.
2. (Difference in mean total) significant/is not due to chance/is real;
(d) No bias;

Ignore: 'representative sample'.
(e) 1. Removes species/types of plant/insect;

Accept: decrease in plant/insect diversity.
2. Fewer food sources;
lgnore: less food.
Accept: less variety of food.
Accept: removes a food source.
3. Fewer habitats/niches;

Accept: loss/removal/destruction/ of a habitat.
Accept: no habitat.
Ignore: homes/shelters.
[8] (a) 1. Vaccine/it contains antigen (from HPV);

Term 'antigen' may be first mentioned with point 2
2. Displayed on antigen-presenting cells;

Accept named example, e.g. macrophage/phagocyte/B cells
3. Specific helper T cell (detects antigen and) stimulates specific B cell;

Accept 'helper T cell with receptor on surface' for 'specific' and B cells with receptor/antibody on surface that bind to antigen for 'specific'
4. B cell divides/goes through mitosis/forms clone to give plasma cells;
5. B cell/plasma cell produces antibody;

4 max
(b) 1. Two (doses) because got more antibody;

Accept more effective in producing antibody
2. With three doses, second dose/dose at 1 month doesn't leadto production of any more antibody (than the two-dose group)/get same/similar response;
3. Three doses would be more expensive/less popular withparents/girls (and serves no purpose);

Accept 'less painful'
(c) t-test, because comparing two means;

Mark for correct test and explanation correct
Accept 'comparing the mean'
Reject 'to show that the results/means are significant'
(d) 1. Compare (base sequences of) DNA;
2. Look for mutations/named mutations (that change the basesequence);
3. Compare (base sequences of) (m)RNA;

1 and 3 accept triplet/codon sequences for comparisons
Ignore references to 'introns/non-coding DNA'
2 max
(a) (i) (Grouped according to) evolutionary
links/history/relationships / common ancestry;
Ignore: closely related, factors, characteristics
Ignore: genetically similar
1
(ii) 1. Able to reproduce;

Accept: smallest taxonomic group/groups of organisms with same genes/ chromosomes/same number of chromosomes
Accept: breed for 'reproduce'
Ignore: mate
Reject: genetically identical
Ignore: similar genes/chromosomes
2. To produce fertile offspring;

Ignore: that are 'viable'
(b) Phylum

Class
Family
Genus;
Accept: pleural answers phyla / genera / families
Accept phonetic answers phyllem/phylem/fylum/fyla/phylae/phyli /jenus/ jenera/familys
All 4 in correct order for 1 mark
(c) 1. Two circles/with two inner circles with no overlap;

OR

= 2 marks
OR
Panthera, Neofelis

= 1 mark
OR
Panthera, Neofelis

= 1 mark
2. Labels correct;
lgnore underlining / capitals
Accept: P tigris/ N nebulosa
Accept phonetic spelling
(d) 1. South China and Sumatran tigers share a more recentcommon ancestor;

Accept: more closely related (statement must be comparative)
Accept: a labelled hierarchy
2. (because) identical/same/matching (nucleotide) sequences;

Accept: converse for Siberian tiger eg Siberian is less closely related to South China AND Sumatran tigers

(a) 1. Type of feed affects (antibiotic) resistant bacteria (in animals);

Accept: null hypotheses
Accept predictions, for example
More antibiotic resistant bacteria form in animals fed with antibiotics in their food
2. (Antibiotic) resistant resistant infect /are passed on to animals/farmer / resistant resistant are passed between animals;

Accept: bird to bird/bird to human/human to human
Accept: a link (exists) between (antibiotic) resistance in animals and their keepers/farmers - as lowest level QWC
3. Incidence of (antibiotic) resistant resistant differs in chickens and turkeys;

Accept: a comparison, eg 'more resistant bacteria in chickens than turkeys'
4. Incidence of (antibiotic) resistant resistant differs in chicken farmers and turkey farmers;

Accept: a comparison, eg 'more resistant bacteria in chickens than turkeys'

Max 2
(b) (i) 1. Large(r) percentage of resistant bacteria in turkeys/low(er) percentage of resistant bacteria in chickens;

Accept: E coli for bacteria
Ignore: number, eg. ignore 'more'/'fewer' turkeys/chickens
2. Large(r) percentage of resistant bacteria in turkey farmers/low(er) percentage of resistant bacteria in chicken farmers;
(ii) 1. (More) antibiotic in turkey feed kills (more) nonresistant bacteria / resistant bacteria survive; Accept:
antibiotic creates selection pressure

Survive must be explicit, not implied by 'reproduce'
2. (Resistant bacteria) reproduce / pass on gene for resistance;
(c) (Human) faeces contain pathogens;

Accept: harmful organisms
(d) 1. Large number of farms / farmers (surveyed) / 46;
'Reliable' is used in the question stem
2. So results are (likely to be) representative / can identify anomalousresults;

Ignore: reproducible / accurate / valid / reliable
Accept valid explanation of replicates minimising effects of chance
(e) 1. (DNA) hybridisation (of gene for resistance in bacteria takenfrom bird and farmer);
2. (Identical) strands separate at high(est) temperature;

OR
3. Compare base/nucleotide sequence (of gene for resistance inbacteria taken from bird and farmer);
4. (Identical strains) have identical/same base sequencesMark in pairs, do not mix and match.

Accept: bacteria in bird and farmer/both types of bacteria have identical base sequences $=2$ marks
(f) 1. (Antibiotic use has) increased cases of bacterial resistance;

Accept: number
2. Transfer/horizontal transmission of (resistance) gene topathogens/harmful bacteria;

Accept: conjugation
3. (Antibiotic) resistant bacteria cause harm / medical treatments lesseffective;

Accept: superbug
4. Avoids side effects on animals;
5. Increased demand for organic food;
6. Antibiotic/resistant bacteria could be present in human food;
7. High cost of antibiotics;
8. Legislation has controlled antibiotic use;Accept: EU/government guidelines

4 max

[15]
(a) Number of species in a community;

Accept: number of species in a habitat/area/ecosystem
Accept: species richness
Accept: all the species for number of species
Ignore: variation/diversity
(b) 1. Number of (organisms of) each species;

Accept: 'population' for number and accept individual for organism.
Accept: 'species richness'
2. Total number of organisms (of all species) / Total number of species; Idea of grand total of all organisms, not just number of different species
(c) 1. Described effect of sewage (eg oxygen depletion/is toxic/kills);

Accept: increase in BOD
Accept: eutrophication/description of eutrophication
2. Prevents some/many species colonising/ reproducing/remaining;

Accept: only a few species survive
3. Sewage is food source for (individuals of) some/a few/species;
4. (So) increase only in their numbers;

Max 2
(d) (i) 1. Results are not repeatable / are not representative /unreliable / conflict / contradict;

Accept: different / don't agree
Ignore: not valid/not reproducible/inaccurate
2. Can't make any conclusions;

2
(ii) Do repeats to find a pattern/distribution/mean (of index of diversity);

Accept: use a different technique to obtain more reliable evidence;
Need idea of more than one repeat
Accept: calculate an average
Accept: at different times
Accept: statistical test to see if results differ significantly
(a) 1. No interbreeding / gene pools are separate / geographic(al) isolation;

Accept: reproductive isolation as an alternative to no interbreeding.
2. Mutation linked to (different) markings/colours;
3. Selection/survival linked to (different) markings/colours;
4. Adapted organisms breed / differential reproductive success;

Note: 'passed on to offspring' on its own is not sufficient for reproduction.
5. Change/increase in allele frequency/frequencies;
(b) 1. (Compare DNA) base sequence / base pairing / (DNA) hybridisation;

Ignore: compare chromosomes / 'genetic make-up'.
Accept: (compare) genes / introns / exons.
Note: reference to only comparing alleles is 1 max.
2. Different in six (species) /different in different species / similar in three (subspecies) /similar in same species/subspecies;

Ignore: compare chromosomes / 'genetic make-up'.
Reject: 'same alleles/ same DNA bases in three species/subspecies'.
Note: mark point 2 can be awarded without mark point 1.
[7] (a) 1. Number of (individuals of) each species;

Accept: 'population' for 'number’
2. Total number of individuals / number of species;

Accept: 'species richness'
MP2 allows for other types of diversity index
(b) (i) (Shows) results are due to the herbicide / are not due to another factor / (to) compare the effect of using and not using the herbicide / shows the effect of adding the herbicide;

Neutral: allows a comparison
Neutral: ensures results are due to the independent variable
Reject: 'insecticide'
Accept: 'pesticide'
(ii) 1. (More) weeds killed so more crops / plants survive / higher yield / less competition;
2. High concentrations (of herbicide) harm / damage / kill / are toxic to crops / plants;
Accept: 'pesticide'
Neutral: 'insecticide'
Accept: use of figures (eg 400+)
(iii) 1. Reduced plant diversity / fewer plant species / fewer varieties of plant;

Accept: 'weed' for 'plant'
Neutral: fewer plants
Accept: only one crop species remains
2. Fewer habitats / niches;
3. Fewer food sources / varieties of food;

Neutral: less food
[8] 1. Carbon dioxide combines with ribulose bisphosphate / RuBP;
12
2. Produces two glycerate (3-)phosphate / GP;

Accept: any answer which indicates that $2 x$ as much GP produced from one RuBP.
3. GP reduced to triose phosphate / TP;

Must have idea of reduction. This may be conveyed by stating m.p. 4.
4. Using reduced NADP;

Reject: Any reference to reduced NAD for m.p. 4 but allow reference to reduction for m.p. 3.
5. Using energy from ATP;

Must be in context of GP to TP.
6. Triose phosphate converted to glucose / hexose / RuBP / ribulose bisphosphate /named organic substance;
[6] (a) Succession;

Ignore any word in front of succession e.g. secondary / ecological succession.
Neutral 'forestation'.
(b) 1. Greater variety / diversity of plants / insects / more plant / insect species;Neutral: more plants.
2. More food sources / more varieties of food;

Neutral: more food / more / greater food source (singular).
3. Greater variety / more habitats / niches;Accept: more nesting sites.

Q Neutral: more homes / shelters.
(c) (i) Temperature and carbon dioxide;Neutral: water, chlorophyll.
(ii) Shows (gross) photosynthesis / productivity minus respiration / more carbondioxide used in photosynthesis than produced in respiration;

Correct answers are often shown as: net productivity = (gross) photosynthesis - (minus) respiration.
(iii) 1. (Shade plant) has lower (rate of) respiration / respiratory losses / less CO2 released at 0 light intensity / in dark; Accept use of figures.

Accept: lower compensation point.
2. Greater (net) productivity / less sugars / glucose used / more sugars / glucose available;
Neutral: any references to rate of photosynthesis.
[8] (a) (i) 1. Groups within groups;

1. accept idea of larger groups at the top / smaller groups at thebottom
2. No overlap (between groups);

2
(ii) (Grouped according to) evolutionary links / history / relationships / common ancestry;

Neutral: closely related
Neutral: genetically similar
(b) (i) 1. (Only) one amino acid different / least differences / similar amino acid sequence / similar primary structure;
2. (So) similar DNA sequence / base sequence;
(ii) 1. Compared with humans / not compared with each other;

Accept: degenerate code / more than one triplet (codes) for an amino acid
2. Differences may be at different positions / different amino acids affected / does not show where the differences are (in the sequence);

1 max
(iii) 1. All organisms respire / have cytochrome c;

Accept: converse arguments for haemoglobin

1. Accept 'more' instead of 'all'
2. Accept 'animals' instead of organisms'
3. (Cytochrome c structure) is more conserved / less varied (betweenorganisms);
4. Neutral: cytochrome c is conserved

1 max
[7] (a) Push - legume

Pull - grass;
Both needed for mark
(b) 1. Set up tape measures on two sides of the plot / make grid of plot;

Allow 'Number each plant'. With this approach mp3 cannot be awarded.
2. Use random number table / calculator / generator;Allow 'Select from a hat' idea.
3. To generate coordinates;
(c) 1. To prevent competition between the maize and the grass;2. For light / nutrients / water;

OR

3. Idea of limits movement of pest (between grass and maize);
4. Only eating / damaging grass;
(d) 1. Nitrogen-fixing bacteria convert nitrogen (in the air) into ammonium compounds (in the soil) which are converted into nitrates / nitrification occurs;

Accept 'ammonia' for 'ammonium compounds'.
2. Maize uses nitrates (in soil) for amino acid / protein / ATP / nucleotideproduction;
2. Must be in the context of maize.

Ignore ionic formulae unless only these are given.
(e) 1. Reduced \% damage to maize plants / increased maize grain yield;
2. Calculation to justify mp 1;
3. Standard deviation shows no overlap but need stats to show significance of thisdifference;
4. More profit / net income / greater income than additional cost (with push-pull);
5. $\$ 322$ extra / 408% more / $\$ 401$ v $\$ 79$ profit;

Accept ' $\$ 350$ extra income compared to $\$ 28$ extra spend'.
Mp5 gains credit for both mp4 and 5
(ii) 1. Find coordinates (on a grid) / split area into squares / number the sites;

1. Ignore references to tape measures, metre rulers etc
2. Method of generating / finding random numbers eg calculator / computer/random number generator / random numbers table;
3. Accept: numbers out of a hat / use of dice
(iii) 1. Breeding (of lizards);

Neutral: weather / climate / hurricanes / hibernation / migration / emigration / immigration
2. Food source / prey;
3. Predator;
4. Variation in malarial infection;
5. Temperature variation;
6. Availability of water eg drought / 'rainy season'
(b) 1. Number in sample varies;
2. Allow a (valid) comparison;
(c) 1. (Overall) positive correlation (for either / both species); Neutral: only one study / no repeats
2. Reference to (site) 5 / 300 metres;
3. Limited results for A. wattsi / small sample / number / percentage infected for A. wattsi;.

2 max
(d) (i) 1. Fewer A.wattsi infected / more A. gingivinus infected;
2. Higher number of A.wattsi present when higher percentage / number of A.gingivinus infected / no A.wattsi present when A.gingivinus has zero infection;
(ii) 1. Reduced immunity / increased susceptibility to disease;

1. Accept: idea that energy / resources are used to combat malaria
2. Reduced oxygen transport / uptake / respiration / reduced activity / movement;
(iii) 1. There is a probability of less than $1 \% / 0.01$;
3. Reject: probability is / equal to $1 \% / 0.01$;
4. Reject $0.01 \% / 5 \% / 0.05 / 0.05 \%$
5. That result(s) / correlation / it is due to chance;
6. Allow correct interpretation using above (incorrect) figures eg there is a probability of less than 5\% that the results are due to chance $=1$ mark

OR

3. There is a probability of more than $99 \% / 0.99$;
4. That result(s) / correlation / it is not due to chance;

Note: there is a probability of more than 5\% that the results are due to chance $=0$ marks
3. Reject: probability is / equal to 99% / 0.99;
3. Reject $0.99 \% / 95 \% / 0.95 / 0.95 \%$
4. Allow correct interpretation of above figures ie 0.99\% / 95\% /
0.95 / 0.95% but reject if less than
[15] (a) (i) Kingdom / phylum / class;

Accept Animalia / animal kingdom / Chordata / Chordates / Aves
Allow phonetic spelling
(ii) Family;
(b) 1. Shows the spread of the data / how data varies;

1. Reject range.

Accept varies from the mean
2. Overlap = no difference / due to chance / not significant; 2. Allow converse
(c) 1. Different species would have different amino acid sequences;Accept more closely related = more similar sequence
2. Amino acid sequence is the result of DNA / alleles / base sequence;

References to incorrect statements about coding negates second mark
[6] (a) Removes bias;
(b) (i) $1.1 .28 / 1.29 / 1.285 / 1.3$

1. Ignore more than $3 d p$
2. Answer incorrect but shows clear understanding of Σ
3. $\Sigma=318250$. Allow mark if denominator written out. Incorrect denominator but evidence of understanding gains mark
(ii) Diversity index would be lower (NO MARK)

Assume wheat field if site unspecified

1. Fewer species / Beech aphid / Large white butterfly / 7-spot ladybird absent / only three species / species diversity lower / mostly one species / mostly bird-cherry aphid;
2. Allow species richness in context of few species
3. Fewer plant species;
4. Allow one type of food source if clearly plant
(c) For:
5. Data support the claim / evidence supports claim;
6. Ignore reference to correlation / causation

Against:
2. Only wheat field / only comparing with wood / one type of habitat / only insectsconsidered;
(d) 1. Greater variety of plants;
2. Another habitat / more habitats / places to live / niches / another food source /more food types;
2. Answers referring to 'more food' should not be credited. Allow reference to either animal or plant as foods
[9] (a) 1. Carbohydrate / sugar / named carbohydrate;
2. Minerals / named mineral ion;

Accept alternatives for mineral such as inorganic substances / ions. Accept symbol for ion. Accept incorrect symbols providing that answers are not ambiguous.
3. Amino acids / protein;
4. Vitamins;
(b) 1. Shake / stir / mix;
2. Even distribution of yeast / cells;

Accept other terms with a similar meaning for both points
(c) Two marks for correct answer of 20 / 20.2 / 20.22;;

One mark for incorrect answer in which student clearly shows increase as 8.912 7.413 or as 1.499;

Ignore references to 10^{6}
(d) 1. More competition;
2. Less oxygen;
3. Less glucose / sugar / carbohydrate / respiratory substrate;
4. Ethanol / alcohol becomes toxic / inhibits respiration / inhibits reproduction;
5. Fall in pH ;
[8] (a) 1. Closer the (amino acid) sequence the closer the relationship;
2. (Protein structure) related to (DNA) base / triplet sequence;

Amino acid sequence is related to (DNA) base / triplet sequence $=$ two marks;
(b) 1. Reference to base triplets / triplet code / more bases than amino acids / longer base sequence than amino acid sequence;

Different (base) triplets code for same amino acids = 2 marks;
Degeneracy of triplet code $=2$ marks
2. Introns / non-coding DNA / degeneracy of code / more than one code for each amino acid;

Ignore reference to codon.
[4] (a) Greater variety / different foods;

More habitats / niches;
(b) Also measures number of individuals in a species / different proportions of species;

Some species may be present in low / high numbers;
First marking point can only be awarded if there is a reference to species.
(c) (i) Large surface area to volume (ratio) / permeable / thin (outer layer); Correctreference to diffusion;

Accept (Eggs) cannot move (out of water) for 1 mark
(ii) Concentration (of pesticide) is increased;
(a) (i) Produces a more reliable mean / average / makes sure sample was representative /
reduce effect of extreme values / identify anomalies;
Ignore references to chance
(ii) Removes bias;
(b) Two marks for correct answer of 5.8;

One mark for incorrect answer that clearly shows denominator as 216;
(c) 1. Increase in variety of plants / shrubs / grass;
2. More habitats / niches;
3. Greater variety of food sources / more food sources;

Answers only referring to 'more food' should not be credited
[7] (a) Two marks for correct answer, 41.9 / 42 ;;
23
One mark for incorrect answer of 0.42;
(b) Increases proportion of crop that is used / greater proportion is grain / reducesproportion of crop that is not used / is not grain;
(c) Quadrats from different parts of field;

Biotic / abiotic factors / named biotic / abiotic factor different;
(d) Water (in plants and grain);

Varies;
[7] (a) Greater when treated with herbicide G;

Same number but total biomass larger;
Can be shown by figures
(b) Fewer weeds left to produce seeds;

Less contamination of crop (by weeds); / fewer weeds to separate from crop; / less competition (between crop and weeds);
(c) Advantage

Weeds growing fast / photosynthesising fast so effect will be seen / will have large effect;

Disadvantage

No information about winter / other seasons /
weeds not growing fast / could kill
(beneficial) insects /
crop may be harvested before effects noticeable;
One mark for advantage and
one mark for disadvantage
(d) Limitations of investigation

1. No control / untreated field;
2. Amount of herbicide may be different;
3. May be differences between fields; Eg soil Nutrients / fertiliser added Type of weedMicroclimates
4. May be different number of weeds (at start);

Limitations of results

5. No replicates / one set of data;
6. Field size may vary / not specified;

Scientific Research

7. Scientific research / example of scientific research has led to greater yield; When marking please number the marking points
e.g. $\sqrt[5]{ }$ means a mark award for point 5

5 max
] (a) Banding pattern changes as cheetah gets older / difficult to judge as tail is short / fluffy;
(b) (i) Mean not (always) a whole number; Standard deviation not (always) zero;
(ii) Movement of tail / angle of sight / confused it with another band / subjective estimation;

Accept reference to Figure 1
E.g. Bands 2 and 3 have same thickness but look different
(c) Band width not the same on both sides of tail;
(d) Offspring of the same family will be more similar genetically;

As have same mother (and father) / parent;
Expect to see more differences in randomly chosen cheetahs;

