Mark schemes

(a) (i) 22 ;

1
(ii) 1. Odd number of chromosomes / 33 chromosomes (in leaf cell);
2. Chromosomes cannot pair / cannot undergo meiosis / would result in half chromosomes / cannot form haploid cells;

2
(b) (i) Fast growth / produces crop fast / produces large crop; Do not insist on relative statement.

Accept similar terms for fast. E.g. "better" growth
Do not accept unqualified references to profit.
(ii) Leaves less likely to break / higher breaking strength;
(c) Low genetic diversity because they are produced by mitosis;

Will all have the same DNA / genes / alleles / will be genetically identical / will be clones;

OR

Low genetic diversity because they are not produced by meiosis;
No crossing over / independent segregation / will not be genetically different; Independent segregation is the specification term. Accept other such as random assortment.
[7] (a) Shape

1. Different penicillin has different shape / structure / enzyme / active site hasspecific shape / structure;

Not different

Binding

2. No longer fits / binds to active site / not complementary to active site / does not form E-S complex;

Consequence

3. (Different) penicillin not broken down;
(b) (i) 1. Kills pathogenic / harmful bacteria / pathogens;
4. Disease less likely / improves health / animals healthier / reduces spread of infection;
5. Faster growth / more productive animals / more food converted to meat /greater survival / lower vet's bills / increased yield / less energy (for "fighting infection"); Principles:
Action of antibiotic. Do not accept stops all disease
Action on health
Effect on production
(ii) 1. (Adding antibiotics) selects in favour of antibiotic resistance / resistant bacteria more likely to survive;
6. Increase in numbers / higher proportion of resistant bacteria;

Penalise immune only on the first occasion it occurs in this part of the question.
] (a) (So results) can be compared / so measurement is the same each time / because eye is
not perfectly round / uniform;
Accept eye opens to different amounts
(b) (i) 1. Eye (diameter) is smaller and antennae longer;
2. Antennae detecting touch;
3. Data only refers to shrimps / data may not apply to all animals / only inone area;
The principle here is that candidate has recognised that both features confirm suggestion. Exact wording does not matter.

2 max
(ii) 1. Standard deviation gives a measure of spread / variation;
2. More standard deviations overlap, the less likely it is that differences are real / significant / the more likely they are caused by chance;
Do not accept range
Accept converse.
Although we are looking for the idea of significance, we cannot require this term.
(c) (i) Qualitative statement about difference in size /
difference in variation /
overlap in size;
Quantitative statement about
difference in size /
difference in variation /
overlap in size;
Supported by relevant two sets of figures from graph;;
Note simplistic answer involving a quantitative statement gains 1 mark.
More specific answer involving quantitative information gains 2 marks.
(ii) (No) for same body length, antenna are longer / antenna are shorter / some with longer body have short antennae / some with shorter body length have longer antennae;

OR

(Yes) positive correlation in open / in cave;
Habitat not critical as a term.
Must refer to idea of same habitat
Accept description
(e) 1. A small number of shrimps were / went into the cave;
2. All / high proportion of shrimps had allele L;
3. Cave population descended from these / these reproduce;
(f) (i) 1. Cross shrimps from two sites / watch courtship;
2. Breed young together / observe mating;
3. Allow 1 mark for any method of improving quality of results e.g. carry outreciprocal crosses / large number of crosses / isolate beforehand; Other valid equivalent suggestions should be accepted.
(ii) If same species the shrimps would breed, producing fertile young / courtship species specific;

Accept any form of evidence - mating / laying eggs / giving birth to young.
[15] (a) (i) Faster / greater / more effective response in children;

Do not accept children have more haemoglobin
(ii) Use line of best fit;

Extrapolate / extend line (and read from graph);
Allow calculation using rate of increase per day = one mark.
However for both marks this must be linked to line of best fit.
(iii) More than one polypeptide chain;

Allow many polypeptide chains.
'Haemoglobin has four polypeptide chains' must be in correct context to gain mark.
(b) (i) Has same water potential;

Allow converse for effect of using distilled water or a concentrated solution.

No (net) water movement / osmosis;

Cells will not swell / burst / change size;
No osmotic lysis = two marks
(ii) Pernicious anaemia (cells) greater range / spread / variation of diameters /widths;

Some pernicious anaemia (cells) wider than $9(\mu \mathrm{~m})$ / some less than $5.5(\mu \mathrm{~m})$ / without pernicious anaemia none more than $9(\mu \mathrm{~m})$ / none less than 5.5 ($\mu \mathrm{m}$);

Pernicious anaemia (cells) peak / most frequent at $8.5(\mu \mathrm{~m}) /$ peak / most frequent at higher diameter / / without pernicious anaemia peak / most frequent at $7(\mu \mathrm{~m}) /$ peaks at lower diameter;

2 max
(b) Isolation / quarantine / 'kept separate';

Screening / testing (of patients / doctors etc);
Sterilisation of wards / equipment / method to improve hygiene;
Do not allow improve 'hygiene' or 'cleanliness' without named example such as 'washing hands' use of gloves etc.

2 max
(c) May not all be absorbed;

May be broken down / metabolised / excreted quickly;
To kill the microorganisms / bacteria;
Reference to antibiotic resistance; Reference to becoming 'immune' negates last marking point.
(d) (i) P ;
(ii) S ;
(e) (i) Prevents bias;

Vested interest (of scientists);
Prevents 'placebo' / positive / negative / psychological effects / 'demand characteristics' (in volunteers);
(ii) Age;

Ethnicity;
Lifestyle;
Body mass;
Health;
Sex of person; Ignore references to same or different
(f) Gradual / slight increase followed by rapid / greater increase; gradual increase followed by rapid increase.
(a) Shows trend of mean temperature rise;

Higher temperatures more frequent since 1984 (in January and February);
Considerable variation in temperature from year to year;
Which may be due to chance;
No mark for yes or no Do not penalise candidates who state there is no trend
(b) Construct null nypothesis;

Use Spearman rank (and calculate test statistic);
Look up in table (to find critical value of $\mathrm{P}=0.05 / 5 \%$);
Use figure (in table) to accept or reject null hypothesis;
(c) (i) (Particular daylength) always occurs at same time of year / valid example; Birds do not start laying eggs when period of warm weather occurs early in year;
Synchronises breeding behaviour;
Sufficient foraging time for food collection for young;
(ii) Birds able to respond to changing climate;

Food availability (mainly) determined by temperature;
As insect / invertebrate development temperature-dependent;
(d) A correlation does not indicate a causal relationship;

As may be due to another factor / named factor;
(e) Visits could be up to 5 days apart;

Date of egg-laying may be inaccurate by $5+$ days;
[13] (a) Recognition of same species;

Stimulates release of gametes;
Recognition of mate / opposite gender;
Indication of sexual maturity / fertility;
(b) (i) Internal fertilisation / fertilisation occurs in pouch / limited area;

Q The term fertilisation is not required in the answer but must be implied.
(ii) Protection from predators (developing in pouch);
(c) (i) Less stress caused to seahorse / quicker / more accurate method / body is curved / head is linear;

Q Do not accept "easier" unless qualified.
(ii) Head length proportional to body length / or described;
(d) Positive correlation between head / body lengths of male and female / female andmale with similar head / body lengths pair together;
(e) Use line of best fit;

And extrapolate / extend line as required;
(f) (Compare) DNA;

Sequence of bases / nucleotides;
Compare same / named protein;
Sequence of amino acids / primary structure;
Immunological evidence - not a mark
Inject (seahorse) protein / serum into animal;
(Obtain) antibodies / serum;
Add protein / serum / plasma from other (seahorse) species;
Amount of precipitate indicates relationship;
Q The marks awarded for reference to DNA and sequence of bases / nucleotides must be in a different context to DNA hybridisation.
[15] (a) group of organisms with similar features;
8 can (interbreed to) produce fertile offspring;
(b) directional selection;
any TWO from
selection against one extreme / for one extreme; against broadest beaks in B and narrowest beaks in $\mathbf{A} /$ for narrowest in \mathbf{B} and broadest in \mathbf{A}; whole distribution / range / mean / mode / median is shifted towards favoured extreme;
(a) Excitation of chlorophyll molecule / electrons / energy of (pairs of)
electrons raised to higher energy level;
Electron(s) emitted from chlorophyll molecule;
Electron(s) to electron transport chain;
Loss of energy by electron(s) along electron transport chain;
Energy lost by electron(s) is used to synthesise ATP;
From ADP + Pi;
"By electrons" need not be stated in each marking point if it can be reasonably inferred that the candidate is referring to electrons
$\max 5$
(b) Little green light reaches bottom as absorbed by surface dwellers / water; Red and blue not absorbed and so penetrate;
Variation in pigments of sediment dwellers;
Bacteria with chlorophyll at an advantage as chlorophyll absorbs red and blue; (Survive to) reproduce in greater numbers and pass on advantageous alleles / genes in greater numbers / increase in frequency of advantageous alleles in subsequent generations;
Increase in frequency / numbers of bacteria with chlorophyll;
[11] (a) 1. frequent use of antibiotic creates selection pressure / antibiotic kills bacteria;
2. bacteria with mutation / resistance have (selective) advantage over others / described;
3. (survive to) reproduce more than other types pass on advantageous allele / mutated allele in greater numbers;
4. frequency of (advantageous) allele increases in subsequent generations;
(penalise use of "gene" instead of allele once only)
5. frequency of resistant types increases in subsequent generations;
(b) correct answer = 0.18; And
three marks for three of: $p+q$
$=1$ and $p^{2}+2 p q+q^{2}=1$;
$0.01=q^{2} ; q=0.1 ; p=0.9$ frequency of heterozygotes $=2 p q=2$
$\times 0.1 \times 0.9 / 2 \times$ candidates $p \times$ candidates q;
4 max
(a) (i) Continuous variation - range of values / not discrete categories / many

11 categories / no gaps;
(ii) Crossing over / chiasmata;

Random segregation / independent assortment;
In meiosis I and meiosis II;
$\max 2$
(b) Range influenced by single 'outlier' (accept anomaly) / converse for S.D.;
S.D. shows dispersion / spread about mean / range only shows highest and lowest values / extremes;
Or
S.D. allows statistical use;

Tests whether or not differences are significant;
$\max 2$
[4] (a) 1. Occurs in an unchanging environment;
\square
$+$
2. Selection against extremes / selection for the mean / mean / median / modeunaltered
3. Range / S.D is reduced
4. Increasing proportion of populations becomes well adapted to environment;
(b) 1. All plants are acyanogenic below $-4^{\circ} \mathrm{C}$ and (most) cyanogenic above $+10^{\circ} \mathrm{C}$;
2. Cyanogenic plants' cells freeze below -4°;
3. Releasing cyanide (into their own tissues) / damaging / killing plants / disruptingmetabolism;
4. Selective advantage not to produce cyanide at $-4^{\circ} \mathrm{C}$;
5. Slugs present at higher temperatures / not usually present / inactive at lowertemperatures and cyanide production kills / deters slugs;
[10] (a) (i) to ensure that no unwanted bacteria will be present;
13
(ii) to check that bacteria cells do not die anyway / to show water / solvent has no effect on growth;
(b) some bacteria are resistant / some areas of dish have no antibiotic /
antibiotic not spread evenly;
(a) (i) EITHER: Correct answer: $3.45 / 3.44 / 3.4=2$ marks

OR: Understanding of $\sum \mathrm{n}(\mathrm{n}-1) /$ use of $134 /(2+90+12+30)$ + wrong answer = 1 mark
$\max 2$
(ii) Takes account of number of individuals / abundance / population size (as well as number of species);
(b) The species at A / F.spiralis loses less water / loses water less rapidly / loses less mass;

The species at A / F.spiralis better adapted to / can survive where exposed for longer / to drier conditions;

The species at A / F.spiralis avoids competition For named aspect - e.g. light / substratum / space / CO_{2};

ACCEPT converse argument re. F. serratus
[6] (a) Tapes / string / axes laid out at right angles / grid area;

Method of obtaining random co-ordinates;
Do not allow "Use random number generator"
(b) (i) Decrease then remain constant;

From 200 cm / over 150 cm ;
(ii) Oxygen decreasing because soil becomes more compacted / notreplaced;

Decrease in oxygen leads to fewer aerobes surviving;
(c) Anaerobic bacteria replace aerobic as oxygen decreased by aerobic bacteria; Remove competition;
Aerobic bacteria no longer able to survive in these conditions;
(d) (i) Near the surface / in top 50 cm ;

Table shows decrease with time at greater depths;
(ii) Decrease;

Fewer aerobic bacteria with depth;
Oxygen concentration decreases / less oxygen at depth;
(e) Probability greater than $95 \% / 0.95$;

Results are not due to chance / results are significant;
Because bars do not overlap;
(f) Plot as graph;

Draw line of best fit;
Read off appropriate value;
3
[20] (a) greater environmental influence than genetic;

16

(b) identical twins have same genotype / converse for nonidentical; compare identical and non-identical twins / identical twins who have been separated / non-identical twins in same environment; if genetic - similarity between identical twins / converse; large sample required / use a statistical test;

4
[5] (a) mitosis;
17
genetically / genes / genotype identical;
(reject same genes)
(ignore references to asexual reproduction)

2
(b) (different) environmental conditions / named environmental factor / mutation;
(c) dispersal / prevent overcrowding / competition / colonise ;increased number of (proven) offspring; (not quicker)
[5] (a) breed together;

18 if fertile offspring, then same species;

2
(b) isolation of two populations; variation already present due to mutations;
different environmental conditions / selection pressures leading to selection of different features and hence different alleles; different frequency of alleles; separate gene pools / no interbreeding;
(c) selection of mate dependent on colour pattern; prevents interbreeding / keeps gene pools separate;
(a) zooplankton nearer surface at night;
(a) lower enzyme activity;
decrease in rate of photosynthesis so less carbohydrate formed/ named carbohydrate / lower translocation of sucrose / to growing point; lower respiration; lower rate of nutrient uptake / protein synthesis / cell division;
(b) (i) differ in height when plants from different altitudes grown in same environment;
(ii) plants from $1500 / 3000 \mathrm{~m}$ differ in height when grown at different altitudes;
[6] (a) sections of chromatids exchanged;
sections have different alleles; new combinations of (linked) alleles;
(allow 1 mark for idea that 'genes' are exchanged, if no other marks gained)
(b) (i) length controlled by many genes / polygenes; each gene may have different alleles / idea of additive effects;
OR
environmental factors / or named factor; how named factor may affect growth of seeds;

2 max
(ii) 1. selection of large seeds for sowing;
2. higher proportion of alleles for long length / loss of alleles for short seedsfrom population;
3. (possible appearance of) new alleles through mutation;
4. process repeated over many generations;
(G - allow 1 mark idea for that 'largeness' selected, survives and inherited)
(a) description of interspecific competition / competition between species / birds with beaks of

22 different lengths; link length of beaks to different positions of prey / reference to named bird with particular prey e.g. curlews with longer beaks able to feed on ragworms;
(b) variation in beak length in curlews / one species;longer / more curved beaked curlews outcompete / at advantage / suggested advantage e.g. larger / curled beaks access more food;
reproduction;
genes passed on (to offspring);
(c) body has lower water potential;water diffuses along a water potential gradient / by osmosis;
[8] (a) generation of random co-ordinates;
use of 10 or more quadrats; collection
of all dog whelks in quadrat;
(b) greater variation for sheltered population / population A;range / spread around the mean;
(or converse)
(c) (i) smaller ratio means relatively larger foot/population B hasrelatively large foot; better able to grip; larger / longer shells have greater area exposed / are subject to greater force;
(ii) wave action limits the max. L / A ratio / extremes; valid point about age, e.g. greater age range on sheltered shore / live longer on sheltered shore;
(allow shell size marking point in either (c)(i) or (c)(ii) but only credit once)
(a) To sterilise/kill bacteria;

So that only one kind of bacteria present on agar plate/to prevent contamination (by bacteria);
(b) Clear zone / inhibition zone is where bacteria have not grown/been inhibited/killed; Antibiotic diffuses out of paper disc/into agar;
Bacterium \mathbf{A} inhibited/killed by tetracycline/tetracycline has little effect on bacterium B;
Bacterium B inhibited/killed by penicillin/bacterium \mathbf{A} resistant to penicillin; Both kinds of bacteria resistant to streptomycin;

Q Ignore references to 'immune'

4 max

[6] (a) Hydrolysis;
25
Accept breaking of peptide bonds
1
(b) Adding fluorine changes shape/different shape from other proteins; Do not fit active site (of protease); Induced fit not produced;

2 max
(c) (i) Suitable example;
e.g. Flaming spreader/ use lid of Petri dish as umbrella/ clean bench with disinfectant/ sterilise agar in autoclave;

Ignore references to wearing gloves, unless suitably qualified and unqualified references to 'clean'

1
(ii) All the AMPs killed/inhibited the bacteria/AMPs with fluorine more effective than frog AMP;
Not All fluorine AMPs are equally effective;
Diameter/area of clear zone indicates effectiveness;
Only used one kind of bacterium/need to repeat using other bacteria;
Need to repeat the investigation/only one plate used;
Credit suitable measurements or calculations;

