Mark schemes

(a) 1. Contents of phloem vessel pushed into insect's mouth by high pressure;
2. (High pressure in phloem vessel) caused by loading of sugars into phloem in leaf;
3. And (resulting) entry of water by osmosis.
(b) 1. Polysaccharides are insoluble;
2. So do not affect water potential of gut.
(c) 1. (Only few bacteria passed from parent, so) only a few (copies of) genes passed on (inbacteria);
2. May not / does not include all alleles (of genes, so diversity reduced) OR
Small number of bacteria transmitted means unrepresentative sample.
(d) 1. Number / mass / density of insects per plant;
2. Stage of development / size of plants / insects; Ignore any abiotic factor
(e) Draw around leaf on graph paper and count squares;
[10] (a) Binary fission;

Reject mitosis

(b) 1. Keep lid on Petri dish

OR
Open lid of Petri dish as little as possible.
2. To prevent unwanted bacteria contaminating the dish.

OR
L. monocytogenes may be dangerous / may get out.

OR

3. Wear gloves

OR
Wear mask

OR
Wash hands;
4. To prevent contamination from bacteria on hands / mouth OR
Prevent spread of bacteria outside the lab;

OR

5. Use sterile pipette

OR

Flame the loop

OR

Flame the neck of the container of the culture;
6. To maintain a pure culture of bacteria

4 max
(c) Cinnamon;
(d) 1. Thyme is the most effective / best (at $4^{\circ} \mathrm{C}$);
2. Clove and cinnamon same effectiveness at $4^{\circ} \mathrm{C}$ as $35^{\circ} \mathrm{C}$ (so suitable);
3. Bay and nutmeg are less effective at $4^{\circ} \mathrm{C}$ than $35^{\circ} \mathrm{C}$ (so unsuitable).
(e) Less kinetic energy

OR
Less movement of oil molecules / of phospholipid molecules
(a) PKNJ.
\square
(b) Lutra lutra.
(d) 1. (Hunting) reduced population size(s), so (much) only few alleles left;Accept bottleneck
2. Otters today from one / few surviving population(s);Accept founder effect
3. Inbreeding.Allow any two
(e) 1. Population might have been very small / genetic bottleneck;
2. Population might have started with small number of individuals / by one pregnant female / founder effect; 3. Inbreeding. Allow any two

2 max

[7] (a) (No - no mark)

Graph / bar chart only shows number of species, not the name of the species.
(c) (No - no mark)

1. Mutations are spontaneous / random;
2. Only the rate of mutation is affected by environment;
3. Different species do not interbreed / do not produce fertile offspring;4. So mutation / gene / allele cannot be passed from one species to another.

Ignore references to correlation does not prove causation
4
(d) 1. Initially one / few insects with favourable mutation / allele;
2. Individuals with (favourable) mutation / allele will have more offspring;
3. Takes many generations for (favourable) mutation / allele to become the mostcommon allele (of this gene).

3
[8] (a) 1. Kingdom, Phylum, Class, Order, Family;
2. Luscinia svecica.

1 mark for each correct column
Allow Genus and Species if both placed in box for species but not if both placed in genus box
(b) Number of different alleles of each gene.

Accept number of different base sequences (found) in each gene
(c) 1. Has greater proportion of genes / percentage of genes showing diversity;2. Percentage is 35% compared with 28% / proportion is 0.35 compared with 0.28 .

Allow correct figures that are not rounded up, i.e., $34.9 \% / 0.349$ and
27.8\% / 0.278
(a) 0.32 .

Correct answer = 2 marks
Accept 32\% for 1 mark max
Incorrect answer but identifying 2pq as heterozygous = 1 mark
(b) 1. Mutation produced KDR minus / resistance allele;
2. DDT use provides selection pressure;
3. Mosquitoes with KDR minus allele more likely (to survive) to reproduce; 4. Leading to increase in KDR minus allele in population.
(c) 1. Neurones remain depolarised;
2. So no action potentials / no impulse transmission.
(a) 1. Size of cotton swab;

7
2. Dampness of cotton swab;
3. Size of area of skin;
4. Time rubbed on skin;
5. Part of the body / skin sampled;
6. Volume of agar / nutrient concentration of agar;
7. Incubation time;
8. Incubation temperature;
(b) 99.8;

OR
57 271;
1 mark for writing out correct calculation: $(401.6-0.7) / 401.6 \times 100$ OR (401.6-0.7)/0.7× 100
1 mark max for incorrect rounding
Accept answers to any number of significant figures as long as rounding is correct
(c) 1. Spread here greater above the mean than below;
2. Some / many Petri dishes had no colonies;

Accept idea that data are not normally distributed / is skewed.

1 max

(d) 1. Treatment $\mathbf{C} /$ treatment normally used at the time;
2. (Because) using untreated / soap and water / treatment A/treatment B would have too great a risk of infection;

Accept C has least / lower risk of infection
Accept description of 'infection'
(a) Hydrolysis (reaction);

8
(b) 1. (Phosphate required) to make RNA;
2. (Phosphate required) to make DNA;

1 and 2. If neither DNA or RNA are named allow one mark for nucleotide/nucleic acid/phosphodiester bonds/sugar-phosphate backbone.
3. (Phosphate required) to make ATP/ADP;
4. (Phosphate required) to make membranes;

Ignore: phospholipids without reference to membranes.
5. (Phosphates required) for phosphorylation;

Accept: as additional mark points any named biological molecule containing phosphate e.g. NADP, AMP, RuBP.
(c) Accept answer in range from $3.7: 1$ to $4.1: 1 ;$ Reject any ratio not: 1 .
(d) 1. Seeds/embryo remain dormant/inactive in winter/cold

OR

Growth/development of seed/embryo during winter/cold;
Ignore: hibernate.
Accept: 'seed survives winter/cold'.
Reject: plant develops or seed germinates during winter/cold.
2. Seeds/plants develop in spring/summer

OR

Seeds/plants develop when temperature/light increases;
Accept: seeds/plants develop when more light or when temperature is higher.
Accept: seed germinates/'sprouts' during spring/summer or when temp/light increases.
3. Plant photosynthesise (in spring/when warm);
4. Produce (more) seeds/offspring in spring/growing season;
[7] (a) 1. Change in DNA base/nucleotide (sequence);

Accept: mutation in DNA base (sequence).
Accept: deletion/substitution/addition of a DNA base/nucleotide.
2. Change in amino acid (sequence)/primary
structure;Reject: different amino acid formed.
Ignore: change in code for amino acid.
3. Alters (position of) hydrogen/ionic/disulfide bonds;
4. Change in tertiary structure (of receptor); Reject: any reference to active site.

Ignore: 3°.
(b) 1. (Receptor) is not complementary

OR

(HIV) cannot bind/attach and enter/infect (helper) T cell;
Accept: 'complimentary'.
Accept: invade as alternative to infect.
2. No replication (of virus)

OR
No destruction of (helper) T cell;
Accept: reproduction (of virus).
(c) 1. Low/lower exposure to HIV (in Europe)

OR

Low/lower number of HIV/AIDS (infections/cases);
Accept: converse.
2. (HIV) has only been present for a short time period OR
(HIV relatively) recently evolved;
3. Mutation/CCR5 has been around for many years;

Accept: frequency of mutation has always been high.
4. Mutation/CCR5 is advantageous (for something else);
[8] (a) Bacteria killed;

Ignore: no growth or growth of bacteria prevented.
Accept: bacteria destroyed.
Accept: no living bacteria.
(b) Clear zone would be too large

OR
Clear zones would overlap/merge
OR
Could kill all bacteria (on the plate);
Must convey idea of too large.
(c) 1. (Same) size;

Accept: any measure of size e.g. thickness, area, diameter.
Ignore: 'same shape' as shape shown on the diagram.
2. (Same) material/absorbency;
3. In solution for same time period;

Ignore: reference to volume of disinfectant.
(d) Any number between 2.5 to 3.2 = two marks;;

Allow one mark for an incorrect answer but shows method of calculating how many times more effective D is than B e.g. 22 divided by $13 / 14$ or 11 divided by $6.5 / 7$ or 1.57/1.6/1.69/1.7.

2
[6] (a) Locus;

Accept: loci
(b) Differences in DNA / differences in base sequence of DNA;

Accept: number of different alleles / size/variation in gene pool
Reject: genes
1
(c) 1. Jack Russell (genetic) diversity is (significantly) greatest;
2. Bull terrier (genetic) diversity is (significantly) smallest / is mostinbred;
3. Miniature terrier and Airedale terriers are similar;

1-3: do not credit just a list of values
4. Standard deviations do not overlap / do overlap with correct ref tosignificance;

Reference to significance must be relevant to examples given

Max 3

(d) 1. (Bull terrier) breeding has included a genetic bottleneck/ smallpopulation/more inbreeding/ greater selection (pressure);

Accept: founder effect
2. Reduced number of different alleles/size of gene pool;

Reject: decrease in number of genes
Ignore ref to mutations
OR
3. Miniature (terrier) breeding has included more outbreeding/lessselection (pressure);
4. Increased number of different alleles/larger gene pool/more varietyof alleles;

Reject if genes used instead of alleles
Reject: lower frequency of alleles
(a) 1. Type of feed affects (antibiotic) resistant bacteria (in animals);

Accept: null hypotheses
Accept predictions, for example
More antibiotic resistant bacteria form in animals fed with antibiotics in their food
2. (Antibiotic) resistant resistant infect /are passed on to animals/farmer / resistant resistant are passed between animals;

Accept: bird to bird/bird to human/human to human
Accept: a link (exists) between (antibiotic) resistance in animals and their keepers/farmers - as lowest level QWC
3. Incidence of (antibiotic) resistant resistant differs in chickens and turkeys;

Accept: a comparison, eg 'more resistant bacteria in chickens than turkeys'
4. Incidence of (antibiotic) resistant resistant differs in chicken farmers and turkey farmers;

Accept: a comparison, eg 'more resistant bacteria in chickens than turkeys'
(b) (i) 1. Large(r) percentage of resistant bacteria in turkeys/low(er) percentage of resistant bacteria in chickens;

Accept: E coli for bacteria
Ignore: number, eg. ignore 'more'/'fewer' turkeys/chickens
2. Large(r) percentage of resistant bacteria in turkey farmers/low(er) percentage of resistant bacteria in chicken farmers;
(ii) 1. (More) antibiotic in turkey feed kills (more) nonresistant bacteria / resistant bacteria survive; Accept: antibiotic creates selection pressure Survive must be explicit, not implied by 'reproduce'
2. (Resistant bacteria) reproduce / pass on gene for resistance;
(c) (Human) faeces contain pathogens;

Accept: harmful organisms
(d) 1. Large number of farms / farmers (surveyed) / 46;
'Reliable' is used in the question stem
2. So results are (likely to be) representative / can identify anomalous results;
(e) 1. (DNA) hybridisation (of gene for resistance in bacteria takenfrom bird and farmer);
2. (Identical) strands separate at high(est) temperature;

OR
3. Compare base/nucleotide sequence (of gene for resistance inbacteria taken from bird and farmer);
4. (Identical strains) have identical/same base sequencesMark in pairs, do not mix and match.

Accept: bacteria in bird and farmer/both types of bacteria have identical base sequences $=2$ marks
(f) 1. (Antibiotic use has) increased cases of bacterial resistance;

Accept: number
2. Transfer/horizontal transmission of (resistance) gene topathogens/harmful bacteria;

Accept: conjugation
3. (Antibiotic) resistant bacteria cause harm / medical treatments lesseffective;

Accept: superbug
4. Avoids side effects on animals;
5. Increased demand for organic food;
6. Antibiotic/resistant bacteria could be present in human food;
7. High cost of antibiotics;
8. Legislation has controlled antibiotic use;Accept: EU/government guidelines 4 max
(a) 1. Change / mutation in base / nucleotide sequence (of DNA / gene);
Q.
Ignore: references to changing base-pairing
Accept: affect for change, if in correct context
Accept: changes triplets / codons
2. Change in amino acid sequence / primary structure (of enzyme);

Accept: different amino acid(s) coded for
Q Reject: different amino acids produced / formed / made
3. Change in hydrogen / ionic / disulfide bonds;Accept: references to sulfur bonds
4. Change in the tertiary structure / shape;

Neutral: alters 3D structure / 3D shape
5. Change in active site;
6. Substrate not complementary / cannot bind (to enzyme / active site) / noenzymesubstrate complexes form.

Accept: no E S complexes form
(b) 1. Non-SR strain falls more / SR strain falls less / up to $10(\mu \mathrm{~g} / \mathrm{cm}-3)$; Must include 10 but only required once in either MP1 or MP2 Ignore: units or absence of This must be a comparative statement
2. Above $10\left(\mu \mathrm{~g} / \mathrm{cm}^{-3}\right)$, SR strain levels out / off and non-SR strain continues to decrease;
3. Greater difference between strains with increasing concentration of antibiotic. This must be a comparative statement
(c) 1. Division stopped (of both strains by scientist);Reject: references to mitosis stopping
2. SR strain still more resistant / fewer die / none die (at higher concentrations ofantibiotic).

Accept: SR strain and non-SR strain would be similar if resistance is due to only stopping division
Need some comparison with non-SR
(d) 1. Make a competitive / non-competitive inhibitor;

Mark in pairs either MP1 and MP2 OR
MP3 and MP4
2. Competitive competes with / blocks active site / non-competitive inhibitor affects / changes active site;

Do not mix and match
OR
3. (Make a drug) that inhibits / denatures / destroys enzyme / stringent response;Accept: drug that 'knocks out'/ destroys enzyme
4. Give at the same time as / before an antibiotic.
(e) (SR strain)

1. Fewer free radicals (than non-SR);

Note: has to be comparative statement
2. Produces more catalase (than non-SR);

Accept converse statements for non-SR.
3. Catalase (might be) linked to production of fewer free radicals / breaking down /removing free radicals.
(a) 1. Sugar-phosphate (backbone) / double stranded / helix so provides strength / stability
/ protects bases / protects hydrogen bonds;
Must be a direct link / obvious to get the mark
Neutral: reference to histones
2. Long / large molecule so can store lots of information;
3. Helix / coiled so compact;

Accept: can store in a small amount of space for 'compact'
4. Base sequence allows information to be stored / base sequence codes foramino acids / protein;

Accept: base sequence allows transcription
5. Double stranded so replication can occur semi-conservatively / strands can act as templates / complementary base pairing / A-T and G-C so accurate replication / identical copies can be made;
6. (Weak) hydrogen bonds for replication / unzipping / strand separation / many hydrogen bonds so stable / strong;

Accept: 'H-bonds' for 'hydrogen bonds'
(c) 180;
(d) (Similarities):

1. Same / similar pattern / both decrease, stay the same then increase;
2. Number of cells stays the same for same length of time;Ignore: wrong days stated

Accept: values of $0.78,0.45$ and 0.30 for MP1, MP2 and MP3 respectively
If no mark is awarded, a principle mark can be given for the idea that all mutant alleles increase the risk

(Differences)

(Per unit volume of blood)
3. Greater / faster decrease in number of healthy cells / more healthy cells killed /healthy cells killed faster;

Accept: converse for cancer cells
Accept: greater percentage decrease in number of cancer cells / greater proportion of cancer cells killed
4. Greater / faster increase in number of healthy cells / more healthy cellsreplaced / divide / healthy cells replaced / divide faster;

Accept: converse for cancer cells
For differences, statements made must be comparative
(e) 1. More / too many healthy cells killed;
2. (So) will take time to replace / increase in number; Neutral: will take time to 'repair'
3. Person may die / have side effects;

2 max
[15] (a) 250000 ;
(b) (i) Loss of 3 bases / triplet = 2 marks;;
'Stop codon / code formed' = 1 mark max unless related to the last amino acid

Loss of base(s) = 1 mark; eg triplet for last amino acid is changed to a stop codon / code = 2 marks
3 bases / triplet forms an intron = 2 marks
Accept: descriptions for 'intron' eg non-coding DNA
'Loss of codon' = 2 marks
(ii) 1. Change in tertiary structure / active site;

Neutral: change in 3D shape / structure
2. (So) faulty / non-functional protein / enzyme;

Accept: reference to examples of loss of function eg fewer $E-S$ complexes formed
[5] (a) 1. No interbreeding / gene pools are separate / geographic(al) isolation;

Accept: all marks if answer written in context of producing increased diversity of plants

1 Do not award this mark in context of new species being formed and then not interbreeding
1 Accept reproductive isolation as an alternative to no interbreeding
2. Mutation;

2 Accept: genetic variation
3. Different selection pressures / different foods / niches / habitats;

3 Accept: different environment / biotic / abiotic conditions or named condition
3 Neutral: different climates
4. Adapted organisms survive and breed / differential reproductive success;
5. Change / increase in allele frequency / frequencies;
(b) Similar / same environmental / abiotic / biotic factors / similar / same selection pressures / no isolation / gene flow can occur (within a species);

Accept: same environment
(a) (i) (We should maintain biodiversity to)

Prevent extinction / loss of populations / reduction in populations / loss of habitats / save organisms for future generations (idea of); Neutral: references to 'playing God' / animal rights
(ii) A suitable example of how some species may be important financially e.g.

1. medical / pharmaceutical uses;
2. commercial products / example given;
3. tourism;
4. agriculture;
5. saving local forest communities;
(b) 1. Fewer plant species / decrease in plant diversity;

Accept: converse arguments for islands with a high percentage of forest remaining 1. Neutral: fewer plants
2. Fewer habitats nesting sites / niches / food sources / varieties / less protectionfrom predators / hunters / environment;
2. Neutral: fewer homes
(c) 1. Number of (individuals / birds of) each species;

1. Neutral: number of species
2. Total number of individuals / birds of all species;
3. Accept: 'total number of birds' as given context for 'all species' in the investigation
(d) 1. (Larger birds have) a low(er) SA:VOL;

Neutral: reference to fat / feathers
2. (So) less heat loss / more heat retained;

MP2 is independent of MP1
(a) 2 of the following pairs:

Mark for explanation must be paired with correct change in structure

1. Larger leaves;
2. Photosynthesis;

OR
Accept converse descriptions of leaves, root and stem: longer root, taller stem, smaller leaves
3. Larger / bigger / thicker root;
4. Storage;

OR
5. Stem shorter / absent;

Accept converse correct explanation
6. Less energy used in stem growth / more energy for producing sugar;
(b) Beet ready quicker / less time required / allows land to be used again / harvestedearlier;

Allow more crops / many harvests. Ignore references to yield / profit
(c) 1. (Diversity) reduced / fewer different alleles / less variation / smaller gene pool;
2. As alleles have been chosen / rejected;
(ii) 1. Change in amino acid / (sequence of) amino acids / primary structure;

1. Reject = different amino acids are 'formed'
2. Change in hydrogen / ionic / disulphide bonds alters tertiary structure /active site (of enzyme);
3. Alters 3D structure on its own is not enough for this markingpoint.
4. Substrate not complementary / cannot bind (to enzyme / active site) / noenzyme- substrate complexes form;
(b) 1. Lack of skin pigment / pale / light skin / albino;
5. Lack of coordination / muscles action affected;
(c) Founder effect / colonies split off / migration / interbreeding;

Allow description of interbreeding e.g. reproduction between individuals from different populations
[7] (a) (i) (Human cells) don't have a cell wall;

20

Accept "they" refers to human cells.
(ii) (Affects) protein synthesis;

Allow description e.g. 'amino acids not joined together / translation.
Reject: affects transcription.
(b) 1. Mutation present / occurs;

Ignore antibiotic causes mutation.
2. Resistance gene / allele;

1. or 2.

Reference to immunity disqualifies first credited marking point.
3. Resistant bacteria (survive and) reproduce;

Reference to mitosis negates marking point 3.
[4] (a) Difference in DNA / base sequence / difference in alleles / genes / gene pool;

Neutral: 'fewer alleles' unless qualified e.g. fewer different alleles.
(b) Environmental;

Accept: Environment
(c) Reduced (genetic diversity);

As fewer different / varied alleles / genes / reduced gene pool;
[4] (a) (i) Antibiotics kill other bacteria / Clostridium is resistant;

Less / no competition so (Clostridium)
reproduces / replicates / multiplies / increases in number;
Reference to bacteria being 'immune' negates first marking point.
Reference to mitosis negates second marking point.
(ii) Immune system less effective / more likely to have other infections / been in hospital;

Accept: 'Weak/ lower' immune system'.
(b) Attaches to active site (of enzyme);
(Methicillin) is a competitive inhibitor / prevents monomers / substrate attaching (to enzyme);
'Competes for active site' $=2$ marks.
Neutral: 'Prevents monomers joining / attaching to each other'.
Allow one mark max for answers relating to non-competitive inhibitor changing active site / preventing substrate attaching. Do not penalise Methicillin forms an enzyme / substrate complex.
(c) (i) Have other illness / medical condition / 'weak' immune system / disease /infection;

Reject: Due to 'other factors', 'are smokers', 'are obese' unless related to disease or illness.
(ii) Increase up to 2006 / 20 (per 100 000) then decreases;
(iii) Correct answer in range of $52-59.1 \%=$ two marks;

Incorrect answer but shows change as between 4.8-5.2 / shows correct subtraction giving this change e.g. 14-9 $=$ one mark.
[9] (a) Same number of ryegrass seedlings in distilled water;
(b) (i) Produce null hypothesis;

Carry out Spearman Rank correlation test / find correlation coefficient;
Use values to show P < critical value / find probability of results being due to chance;

Accept valid example
E.g. There is no correlation between inhibition of germination and the concentration of the extract.
(ii) May be another factor / named factor (that also inhibits germination);
e.g. amount of water in extract
(ii) Scientists crushed plants to get extract;

Plants might not secrete substances in the extract into the soil;
These substances might get broken down in the soil;
Wheat and ryegrass might not grow at the same time / wheat plants might not produce substance when ryegrass is growing;

Concentration of extract in the soil might be different from that in solution;
3 max
(c) (i) Extract inhibits ryegrass germination / extract stops ryegrass starting to grow; Inhibition of root length / causes ryegrass to have shorter roots;
] (a) Banding pattern changes as cheetah gets older / difficult to judge as tail is short / fluffy;
(b) (i) Mean not (always) a whole number;

Standard deviation not (always) zero;
(ii) Movement of tail / angle of sight / confused it with another band / subjective estimation;

Accept reference to Figure 1
E.g. Bands 2 and 3 have same thickness but look different
(c) Band width not the same on both sides of tail;
(d) Offspring of the same family will be more similar genetically;

As have same mother (and father) / parent;
Expect to see more differences in randomly chosen cheetahs;

