Mark schemes

4	(a)	(i)	Faster / greater / more effective response in children;	
Ш			Do not accept children have more haemoglobin	1
		(ii)	Use line of best fit;	1
			Extrapolate / extend line (and read from graph); Allow calculation using rate of increase per day = one mark. However for both marks this must be linked to line of best fit.	1
		(iii)	More than one polypeptide chain; Allow many polypeptide chains. 'Haemoglobin has four polypeptide chains' must be in correct context to gain mark.	
	(b)	(i)	Has same <u>water potential;</u> Allow converse for effect of using distilled water or a concentrated solution.	1
			No (net) water movement / osmosis;	1
			Cells will not swell / burst / change size; No osmotic lysis = two marks	1
		(ii)	Pernicious anaemia (cells) greater range / spread / variation of diameters /widths	•
			Some pernicious anaemia (cells) wider than 9 (μ m) / some less than 5.5 (μ m) / without pernicious anaemia none more than 9 (μ m) / none less than 5.5 (μ m);	
			Pernicious anaemia (cells) peak / most frequent at 8.5 (μm) / peak / most frequent at higher diameter / / without pernicious anaemia peak / most frequent at 7 (μm) / peaks at lower diameter;	
			There are several alternatives for marking points 2 and 3	2 max
] (a)	Ca	nnot make (active) enzyme A (which converts precursor to linamarin) / cannot mal	ke

2 linamarin;

[9

- (b) (i) **AL** + **AI** + **aL** + **aI**;
 - Meiosis separates alleles / homologous chromosomes / pairs of chromosomes; Independent assortment / means either of A / a can go with either of L / I; Accept "random segregation" but cancel if reference to crossingover
- (c) From parental genotypes: AaLI × AaLI (no mark) Note: If wrong parental genotypes / wrong gametes: ALLOW correct derivation of offspring genotypes = 1 max

	AL	AI	aL	al
AL	AALL	AALI	AaLL	AaLl
AI	AALI	AAII	AaLl	Aall
aL	AaLL	AaLl	aaLL	aaLl
al	AaLl	Aall	aaLl	aall

Correct derivation of offspring genotypes; max 2 marks if error in Punnett square

Correct identification of offspring genotypes with at least one **A** and two **I** alleles (= grey cells in above table);

Correct proportion: 3 / 16 / 3:13 / 18.75%;

- (d) (i) There was no (significant) difference in damage between cyanogenic andacyanogenic / being cyanogenic has no effect;
 - (ii) The difference (from expected / from chance variation) is significant / difference / results not just due to chance; Reject null hypothesis; Being cyanogenic does help protect from slug damage;
- 3

3

1

- (e) High slug population:
 - 1. Find <u>only</u> cyanogenic plants / only cyanogenic plants survive;
 - 2. (Cyanide release) limits / stops feeding by slugs / slugs killed; *Accept: converse argument re. acyanogenic plants*

Low slug population:

- 3. Find both types of plant;
- Less selection pressure on plants from slugs / no selective advantage / noselection / described;

1

2

- (a) 1. Homologous chromosomes pair up / bivalents form;
- 3
- 2. Crossing over / chiasmata form;
- 3. Produces <u>new combination</u> of **alleles**;
- 4. Chromosomes separate;
- 5. At random;
- 6. Produces varying combinations of chromosomes / genes / alleles (not twice);
- 7. Chromatids separated at meiosis II / later;

Independent assortment / random segregation = marking points 4 and 5

(b) (i)

6 max

Parental phenotypes	Agouti	White		
Parental genotypes	BbAa	bbaa	;	
Gamete genotypes	BA Ba bA ba	ba	;	
Offspring genotypes	BbAa Bbaa	bbAa bbaa	;	
Offspring phenotype	Agouti Black	White White	;	

Phenotypes must match genotypes

Allow marking points 2 and 3 if correctly derived from wrong parental genotypes

Colour of offspring	Observed (O)	Expected (E)	(O-E)	(O-E) ²	(<u>0-E)²</u> E
Agouti	34	30	4	16	0.53
Black	35	30	5	25	0.83
White	51	60	9	81	1.35
	<u>.</u>	<u>.</u>	Σ	<u>D-E)²</u> E = 2.71	or 2.72
				:: 2	

 $(\chi^2 \text{ correct} = 2 \text{ marks})$ ((O-E)² all correct = 1 mark)

p = 0.05;

2 degrees of freedom;

Differences due to chance / no significant difference as χ^2 less than / to left of critical value OR Not due to chance / difference is significant as χ^2 greater than to right of critical value;

(as appropriate for candidates χ^2)

[15] (a) Chromosomes: C = 8 and D = 4;

4

DNA:

C = 300 and **D** = 150;

(b) (i) testis / ovary; accept anther / carpel / stamen / testicle

(ii) to make chromosomes / chromatids / DNA / genetic material visible;

1

3

2

1

[4] (a) group of organisms with similar features;

5 can (interbreed to) produce fertile offspring;

(b) directional selection; any TWO from

selection against one extreme / for one extreme; against broadest beaks in B and narrowest beaks in A / for narrowest in B and broadest in A; whole distribution / range / mean / mode / median is shifted towards favoured extreme;

6

(f)

(i)

mutation;

(variation in) temperature will affect the solubility of oxygen / rate of respiration / use of (a)

(a)	(varı	ation in) temperature will affect the solubility of oxygen / rate of respiration / use of	
	oxyg gain	jen by cells / diffusion / gas exchange; <i>to</i> credit point made must concern oxygen	1
(b)	(i)	there is no difference between the partial pressure of oxygen in the two groups / the partial pressure of oxygen is the same in each group;	1
	(ii)	results may have been due to <u>chance</u> and statistical test allows us to determine the <u>probability</u> of this / of the difference between results being significant; enables acceptance or rejection of null hypothesis; <i>The key points here are chance and probability used in the correct context.</i>	
			2
(c)	A ; beca injec	use partial pressure of oxygen only reduced when zinc in water / in $f Y$ / because when ted zinc / in $f X$ has no effect on partial pressure of oxygen in blood;	ו 2
(d)	less lactio	oxygen transport to cells / in fish / in blood;anaerobic respiration; c acid produced / less carbon dioxide removed (from gills);	
	more	3 m	ax
(e)	(i) acce exar	copper;calculation based on comparing concentration in woodlice with that in leaves opt any suitable method here, giving marks for the method and explanation. For mple, calculating ratio of concentration in woodlice to concentration in leaves.	s; 2
	(ii)	not absorbed from gut / passes out in faeces / egested / urine / excreted;	1
	(iii)	woodlice eat large amount of leaves;copper stored / accumulates in body;	2

(as a component of) nucleic acids / DNA / RNA / nucleotides;phospholipids; (ii) ATP / ADP;

1

3 max

[5]

- (iii) arsenic-tolerant plants would not be able to take up phosphates / take up a littlephosphate; since likely to involve same mechanism / same carrier / protein; (process of) growth would be poorer than non-tolerant plants;

3

[20]

- (a) Excitation of chlorophyll molecule / electrons / energy of (pairs of) electrons raised to higher energy level; Electron(s) emitted from chlorophyll molecule; Electron(s) to electron transport chain; Loss of energy by electron(s) along electron transport chain; Energy lost by electron(s) is used to synthesise ATP; From ADP + Pi; "By electrons" need not be stated in each marking point if it can be reasonably inferred that the candidate is referring to electrons max 5 Little green light reaches bottom as absorbed by surface dwellers / water; (b) Red and blue not absorbed and so penetrate; Variation in pigments of sediment dwellers; Bacteria with chlorophyll at an advantage as chlorophyll absorbs red and blue; (Survive to) reproduce in greater numbers and pass on advantageous alleles / genes in greater numbers / increase in frequency of advantageous alleles in subsequent generations; Increase in frequency / numbers of bacteria with chlorophyll; 6 Interphase / S-phase; [11] (a) ADCEB; (b) 1 (c) Attachment of centromeres / chromosomes / chromatids; Separation of centromeres /chromatids / chromosomes; 2 (d) Halves chromosome number / haploid;
 - Diploid / full number restored at fertilisation;

7

8

Allow correct reference to variation

max 2

<mark>9</mark> ca	ategoi	ries / no gaps; 1	
		 (ii) Crossing over / chiasmata; Random segregation / independent assortment; In meiosis I and meiosis II; max 2 	÷
	(b)	Range influenced by single 'outlier' (<i>accept anomaly</i>) / converse for S.D.; S.D. shows dispersion / spread about mean / range only shows highest and lowest values / extremes; Or S.D. allows statistical use; Tests whether or not differences are significant:	
		$\max 2$	
10		[4] (a) (meiosis) anapr	iase i,
		<u>chromosomes</u> are moving apart; chromosomes still double structures; 3	
	(b)	chromosomes in each (homologous) pair twist around each other; chromatids break and rejoin to chromatid on sister chromosome; (accept points from a suitable diagram) 2 VEL (a) Chromosomes attach to equator (middle of cell (or	indler
_		[5] (a) Chromosomes attach to equator / middle of ceil / sp	nnaie;
11		Prophase; Anaphase; DNA replication / synthesis / chromosome copying / duplication; Telophase;	
		5	
	(b)	(i) Meiosis; 1	
		(ii) 32; 1	[7]

(a) Later fertilisation / cell fusion; (NOT just 'sexual reproduction')

12

Restoring diploid / original number / not doubling chromosome number; ALLOW ref ' $\frac{1}{2}$ + $\frac{1}{2}$ ' (b) Any three pairs from:

need comparison of meiosis and mitosis each time

Meiosis	Mitosis
(Homologous) chromosomes associate in pairs	(Homologues) independent / do not pair (IGNORE ref. separation
Crossing-over / chiasmata formation	No crossing-over;
Two / (nuclear stages) divisions / \rightarrow 4 offspring cells	One / (nuclear stage) division / \rightarrow 2 offspring cells;
Genetically different (product)	Genetically identical (product);

IGNORE refs. To location

max 3

1

[5] (a) replication / duplication / doubling of chromosomes /

13 replication of DNA / transcription of DNA;

(b)	(i) posi	cell to show correct number of chromosomes;correct shape and tion of centromere:	
	1		2
	(ii)	as (i) except everything halved – <i>Ignore crossing over</i> , (if mitosis and meiosis reversed, allow 1 if otherwise correct)	2
(c)	to re	eplace cells;	1

[6] (a) 1. Chromosomes shorten / thicken / condense;

- Chromosomes associate in homologous / (described) pairs / formation of bivalents / tetrads;
- 3. Crossing-over / chiasma formation;
- 4. Join to <u>spindle</u> (fibres) / moved by <u>spindle;(*)</u>
- 5. (At) equator / middle of cell;(*)
- 6. (join via) centromere / kinetochore;(*)
- 7. (Homologous) chromosomes move to opposite poles / chromosomes separate / move apart; (*ALLOW* 'are pulled apart')
- 8. (Pairs of) chromatids separated in 2nd division;
- (*) OR " independent assortment" unqualified = 1 mark

(b)	 Crossing-over; [IGNORE any wrong ref. to timing] Independent / random assortment / orientation / segregation of (homologous) 	
	chromosomes in meiosis I;	
	 Independent / random assortment / orientation / segregation of chromatids in meiosis II; 	S
	 <u>Any three from:</u> Different adaptations / some better adapted; Some survive / example described; To reproduce; Pass on gene / allele; Allows for changing environment / different environment / exampledescribed; 	3.5
(c)	(i) 21;	1
		-
	 (ii) 1. <i>T. aestivum</i> has 2 copies of each type of chromosome / is diploid; 2. <i>T. aestivum's</i> chromosomes can form bivalents / can assort in meiosis / can 	
	produce haploid gametes; 3. <i>T. aestivum's</i> gametes receive a copy of <u>every chromosome / receive all the</u>	
	genetic information; ACCEPT converse argument for hybrid plants	
	ACCEL T CONVERSE algument for hybrid plants	3 [15]
(a)	Two linked points:	
	Crossing over / exchange of material (between chromatids); Different combinations of alleles / linkage groups changed / broken;	
	OR	
	Independent assortment / alignment of (homologous) chromosomes; Different combinations of (maternal and paternal) chromosomes / alleles; 2 ma	ax
D)	D	
	Gamete genotype M m;	
	Dd	
	Offspring genotype M m;	
	(b) (c)	 (b) 1. Crossing-over; [/GNORE any wrong ref. to timing] 2. Independent / random assortment / orientation / segregation of (homologous) chromosomes in meiosis I; 3. Independent / random assortment / orientation / segregation of chromatids in meiosis II; 4. Any three from: 4. Different adaptations / some better adapted; 5. Some survice / example described; 6. To reproduce; 7. Pass on gene / allele; 8. Allows for changing environment / different environment / exampledescribed; (c) (i) 21; (ii) 1. <i>T. aestivum</i> has 2 copies of each type of chromosome / is diploid; 2. <i>T. aestivum</i>'s chromosomes can form bivalents / can assort in meiosis / can produce haploid gametes; 3. <i>T. aestivum</i>'s gametes receive a copy of <u>every</u> chromosome / receive <u>all</u> the genetic information; <i>ACCEPT converse argument for hybrid plants</i> (a) <i>Two linked points:</i> (b) Crossing over / exchange of material (between chromatids); Different combinations of alleles / linkage groups changed / broken; <i>OR</i> Independent assortment / alignment of (homologous) chromosomes; Different combinations of (maternal and paternal) chromosomes / alleles; (a) <i>Two linked points:</i> (b) D (c) M (c) M (c) M (c) M (c) <i>D</i> (c) <i>D</i><!--</td-->

(a) (i) join / attach nucleotides, to form a strand / along backbone / phosphodiester bonds;

		(reject reference to H bonds, complementary base pairing)	1
	(ii)	ribosome / RER;	1
(b)	(i)	CGTTACCAA;	1
	(ii)	CGU UAC CAA;	1
(c)	<u>subs</u>	stitution;	1
(d)	(i)	alanine;	1
	(ii)	(mutation 1) no change(to sequence of amine acids);	1
	(11)	codon for alanine / degenerate codon / same amino acid coded for;	2
		(mutation 2) (change in sequence) <u>valine</u> replaced by <u>alanine / </u> codon for <u>alanine;</u> folding / shape / tertiary structure / position of bonds may change; <i>(reject peptide bonds)</i>	
		[10] (a) haploid cells produced / halves chromoso	2 ome number;
	fertil chro	lisation / fusion of gametes, <u>diploid</u> number restored; omosome number constant at each generation;	2 max
(b)	prino 4 co	ciple of 2 chromosomes per cell; rrect combinations, long with short;	2
(c)	(i)	8;	
	(ii)	8;	2
(d)	(in n	nales) more gametes produced / rapid gamete production / more lost;	1
		[7] (a) (i)	TB Tb tB tb;
			1

(ii) homologous chromosomes appropriately labelled;

								1
		(iii)	separation of chor	natids;				1
	(b)	(i)	crossing over occubetween D and G ; sections of chroma	ırs; atids / chromosomes	/ DNA / ge	nes exchanged;	;	3
		(ii)	crossing over is inf	requent(between clos	se genes);			1
					[7] (a)	high energy ra	diation / ionisir	ng particles;
19		nam colch cosn carci musi	ed particles / α, β, γ nicine; x rays / nic rays; uv (light); nogen / named carc ard gas / phenols /	; cinogen; tar (qualified);				1 max
	(b)	(i)	removal of one or frameshift / (from r	more bases / nucleot	ide; e sequenc	e change:		
		(ii)	sequence of bases (sequence of) amin (active site / enzyr active sites; <u>white</u> produced / white p not function;	s in mRNA would cha no acids different / di ne 1) changed tertiar pigment does not bin igment remains unch	inge; fferent prin y shape / c id; lilac pig ianged / er	hary structure; changed ment not hzyme 1 does		2
		(iii)	blue and lilac: whit	·e·				4 max
		()						
			_	colour of petal				
			_	(white)				
			-	blue				
				white;				2
						[9] (a)	different form	n of a gene;

20			1
	(b)	hydrogen bonds broken;semi-conservative replication / both strands used (as templates); <u>nucleotides</u> line up complementary / specific base pairing / A and T / C and G; <u>DNA</u> polymerase;	4
	(c)	deletion causes frame shift / alters base sequence (from point of mutation);changes many amino acids / sequence of amino acids (from this point); substitution alters one codon / triplet / one amino acid altered / code degenerate / same amino acid coded for;	
		[8] (a) (i) 8 'chromatids' ea	s ch si
2 1 s	pindle	e drawn;	
			2
		(ii) 4 chromosomes;1 from each homologous pair;	2
	(b)	produces haploid cells / chromosome number halved; fertilisation maintains the diploid / chromosome number (in next generation);	_
		[6] (a) to get haploid / n / half number of chromosomes (i	n cel
22		so that each cell gets one copy of each chromosome / gene / full set of genes / so that fertilisation produces diploid / constant chromosome number; results in independent assortment;	2
	(b)	(i) 4;	1
		(ii) <u>meiosis</u> (has halved the chromosome number);	1
		 (ii) (mitosis because) zygote gets two chromosomes from each gamete / has four chromosomes; 	
		accept haploid for two and diploid for four	
		gamete-producing plant has two chromosomes, so mitosis to produce gametes with two;	
			2 [6]

23		bb BB 1	
	(b)	bivalent;	
	(c)	(i) Ab, aB;	
		(ii) AB, ab; 2	:
	(d)	mutation;different / new allele formed / genes deleted or duplicated / sequence of genes changed <i>(reject genetic information)</i> ; <u>random fusion of gametes / fertilisation; new combination of alleles; independent assortment (of chromosomes) <i>(accept random)</i>; shuffling of maternal and paternal chromosomes / new combination of alleles; <i>(ignore references to stages of meiosis)</i></u>	
		any z x z 4 max	K
		[8] (a) sections of chromatids exchange	anged;
24		sections have different alleles; new combinations of (linked) alleles; (allow 1 mark for idea that 'genes' are exchanged, if no other marks gained)	
	(b)	 (i) length controlled by many genes / polygenes; each gene may have different alleles / idea of additive effects; OR environmental factors / or named factor; how named factor may affect growth of seeds; 	X
		 (ii) 1. selection of large seeds for sowing; 2. higher proportion of alleles for long length / loss of alleles for short seedsfrom population; 3. (possible appearance of) new alleles through mutation; 4. process repeated over many generations; (<i>G</i> - allow 1 mark idea for that 'largeness' selected, survives and inherited) 	
		´4	[9] QWC 1

(a) meiosis halves the chromosome number / from diploid to haploid / produces haploid / \ensuremath{n}

25	cells; v	when gametes fuse / at fertilisation, the diploid number is restored / this keeps the chromosome number constant / correct from one generation to the next / after sexual reproduction; introduces genetic variation / independent assortment / crossing over;	3	
	(b)	M between moss plant and spore;	1	
26	(a)	limited genetic diversity in modern varieties / greater genetic		[4]
20		diversity in old varieties / older varieties contain other (useful) alleles / genes; old varieties useful for future breeding programmes;		
	(b)	 seeds lose viability / will not germinate / develop after long storage; 	2	
		 (ii) preserve variety of alleles / different genotypes / maintain <u>genetic</u> variation; prevent inbreeding / reduces the chance of homozygosity; 	1	
		[5] (a) mutation changes the amino acid sequence / primary structure of Fact	or VIII prot	tein;
27	chang	es the tertiary structure / 3D shape;	2	
	(b)	(mutant) Factor VIII protein is non-functional / does not work with Factor IX;so no conversion of Factor X to active form and pathway blocked;	2	
	(c)	boy's blood contains (active) Factor VIII; Factor VIII haemophiliac's blood contains (active) Factor IX; the mixture has both Factors and so the pathway can		
		complete / blood clots,	2 max [6] (a)	6;
28			1	
		 (i) chromosomes are arranged in (homologous) pairs / bivalents;crossing over / chiasma present / exchange of genetic information; bivalents arranged independently; 	2 max	
		 separation / spliting / pulling apart of <u>homologous</u> chromosomes / <u>pairs</u> of chromosomes; 		

(must give indication that one chromosome moves to each side) (must be in the context of meiosis – not chromatid movements and not chromosomes separate)

		pulled at centromere / by spindle / fibres;	2
(c)	(i)	the short arm of both chromosomes labelled on the middle homologous pair; (B and b must be labelled on separate chromosomes)	1
	(ii)	8 = 2 marks; working showing genotypes with 1 allele from each pair (for example, B C D) = 1 mark	2

[8]