Mark schemes

(a) (During prophase)

1. Chromosomescoil / condense / shorten / thicken / become visible;
2. (Chromosomes) appear as (two sister) chromatids joined at the centromere;
(During metaphase)
3. Chromosomes line up on the equator / centre of the cell;
4. (Chromosomes) attached to spindle fibres;
5. By their centromere;
(During anaphase)
6. The centromere splits / divides;
7. (Sister) chromatids / chromosomes are pulled to opposite poles / ends of the cell /separate;
(During telophase)
8. Chromatids / chromosomesuncoil / unwind / become longer / thinner.

No marks for naming the stages
Reject references to homologous chromosomes / pairing of chromosomes
Ignore references to spindle formation during prophase
(b) 1. Homologous chromosomes pair up;
2. Independent segregation;
3. Maternal and paternal chromosomes are re-shuffled in any combination;
4. Crossing over leads to exchange of parts of (non-sister) chromatids / alleles betweenhomologous chromosomes;
5. (Both) create new combinations of alleles;
[10] (a) 1. Chromosome is formed of two chromatids;
2. (Because) DNA replication (has occurred); 3. (Sister) chromatids held together by centromere.
(b) 1. Chromosomes in homologous pair;
2. One of each into daughter cells / haploid number.
(c) Separation of (sister) chromatids / division of centromere.
(d) 1. Independent segregation (of homologous chromosomes);

Accept random assortment 2.
Crossing over / formation of chiasmata.
(a) PKNJ.

3
(b) Lutra lutra.
(c) Bone / skin / preserved remains / museums.
(d) 1. (Hunting) reduced population size(s), so (much) only few alleles left;Accept bottleneck
2. Otters today from one / few surviving population(s);Accept founder effect
3. Inbreeding.Allow any two
(e) 1. Population might have been very small / genetic bottleneck;
2. Population might have started with small number of individuals / by onepregnant female / founder effect; 3. Inbreeding. Allow any two
(a) Translation.

4
(b) Transfer RNA / tRNA.
(c) TAC;

UAC.
(d) Have different R group.

Accept in diagram
(e) 1. Substitution would result in CCA / CCC / CCU;
2. (All) code for same amino acid / proline;
3. Deletion would cause frame shift / change in all following codons / change nextcodon from UAC to ACC.
[8] (a) (No - no mark)

Graph / bar chart only shows number of species, not the name of the species.
1
(b) (No - no mark)

1. Mutations are spontaneous / random;
2. Only the rate of mutation is affected by environment;
3. Different species do not interbreed / do not produce fertile offspring;4. So mutation / gene / allele cannot be passed from one species to another.

Ignore references to correlation does not prove causation
(c) 1. Initially one / few insects with favourable mutation / allele;
2. Individuals with (favourable) mutation / allele will have more offspring;
3. Takes many generations for (favourable) mutation / allele to become the mostcommon allele (of this gene).
[8] (a) 1. Kingdom, Phylum, Class, Order, Family;
2. Luscinia svecica.

1 mark for each correct column
Allow Genus and Species if both placed in box for species but not if both placed in genus box
(b) Number of different alleles of each gene.

Accept number of different base sequences (found) in each gene
(c) 1. Has greater proportion of genes / percentage of genes showing diversity;2. Percentage is 35% compared with 28% / proportion is 0.35 compared with 0.28 .

Allow correct figures that are not rounded up, i.e., 34.9\% / 0.349
and 27.8\% / 0.278
(a) (D)CBEA.
(b)

Step	Reason
(Taking cells from the root tip)	Region where mitosis / cell division occurs;
(Firmly squashing the root tip)	To allow light through / make tissue layer thin;

(c) (Increase)

1. Chromosomes / DNA replicates;
(First decrease)
2. Homologous chromosomes separate;
(Second decrease)
3. Sister chromatids separate.
(d) 1. (DNA would) double / go to 2 (arbitrary units).
(a) 0.32 .

Correct answer = 2 marks
Accept 32\% for 1 mark max
Incorrect answer but identifying 2pq as heterozygous = 1 mark
(b) 1. Mutation produced KDR minus / resistance allele;
2. DDT use provides selection pressure;
3. Mosquitoes with KDR minus allele more likely (to survive) to reproduce; 4. Leading to increase in KDR minus allele in population.
(c) 1. Neurones remain depolarised;
2. So no action potentials / no impulse transmission.
(d) 1. (Mutation) changes shape of sodium ion channel (protein) / of receptor(protein);
2. DDT no longer complementary / no longer able to bind.
[10] (a) 1. Reduction in ATP production by aerobic respiration;
2. Less force generated because fewer actin and myosin interactions in muscle;
3. Fatigue caused by lactate from anaerobic respiration.
(b) Couple A,

1. Mutation in mitochondrial DNA / DNA of mitochondrion affected;
2. All children got affected mitochondria from mother;
3. (Probably mutation) during formation of mother's ovary / eggs;

Couple B,

4. Mutation in nuclear gene / DNA in nucleus affected;
5. Parents heterozygous;
6. Expect 1 in 4 homozygous affected.
(c) 1. Change to tRNA leads to wrong amino acid being incorporated into protein;
7. Tertiary structure (of protein) changed;
8. Protein required for oxidative phosphorylation / the Krebs cycle, so less / noATP made.
(d) 1. Mitochondria / aerobic respiration not producing much / any ATP;
9. (With MD) increased use of ATP supplied by increase in anaerobic respiration;3.

More lactate produced and leaves muscle by (facilitated) diffusion.
(e) 1. Enough DNA using PCR;
2. Compare DNA sequence with 'normal' DNA.
(a) 1. (So) age not a factor in female choice;
2. (So) will attract a mate;
3. (So similar) sexual maturity;
4. (So) have the correct feathers;
4. Accept 'have blue feathers'

2 max
(b) Number the birds, then numbers out of hat / random numbergenerator;

Both aspects needed for mark
(c) 1. That movement was not related to some other factor (than themale);
2. That movement (towards the male) indicated matingbehaviour;
3. (Females) only respond to throat feathers (of the male) / donot respond to other visual display / sounds / calls (by the male);

2 max
(d) 1. Change in sequence of bases / nucleotides;
2. (As a result of a) deletion / substitution;
3. Change in amino acid sequence / primary structure;
4. Change in tertiary structure of protein;

1. Do not accept 'change in the DNA sequence'
2. Accept e.g. addition / inversion / duplication / translocation
(e) Yes
3. (From resource A) birds can detect UV light;
4. (From resource B) difference between UVR and NR significant/ not due to chance;
5. As error bars do not overlap;
6. max if only No marks awarded
7. Reject idea that 'results' in resource B are significant / not due to chance, must include idea of 'difference' 3. Reject 'as standard deviations do not overlap'

No
4. UV light may not be involved in mating / other factors may beinvolved in mating;
5. Some birds in UVR group were attractive to females;
6. (Experiment in resource B) carried out in artificial conditions /only 40 birds used / small sample size;
6. Neutral: idea that this is only one study / that there are no repeats

4 max
(a) 1. Different parts/areas/amino acid sequences (of amyloid-precursor) protein;

Accept APP
2. Each enzyme is specific/fits/binds/complementary to a different part of the APP; Point 2 subsumes point 1 and is worth 2 marks total.
(b) 1. Peptide bond broken;
2. Using water;

Hydrolysis in stem
(c) 1. Mutations prevent production of enzyme(s)/functional enzyme;
2. (Increase in β-secretase) leads to faster/more β-amyloid production OR
(Decrease in α-secretase) leads to more substrate for β-secretase;
'This' must refer to α-secretase
3. (Leads to) more/greater plaque formation;
(d) 1. (Inhibitor) binds to/blocks active site of β-secretase/enzyme;
2. Stops/reduces production of β-amyloid/plaque;
(e) 1. Some β-amyloid required/needed (to prevent side effects)

OR
(Some) β-secretase needed;
Accept 'Both enzymes needed'
2. Leads to build-up of amyloid-precursor protein (that causes harm)

OR

Too much product of α-secretase (causes harm);
Accept build-up of substrate (leads to harm)
(a) 1. Change in DNA base/nucleotide (sequence);

Accept: mutation in DNA base (sequence).
Accept: deletion/substitution/addition of a DNA base/nucleotide.
2. Change in amino acid (sequence)/primary structure;Reject: different amino acid formed.

Ignore: change in code for amino acid.
3. Alters (position of) hydrogen/ionic/disulfide bonds;
4. Change in tertiary structure (of receptor); Reject: any
reference to active site.
Ignore: 3°.
(b) 1. (Receptor) is not complementary

OR

(HIV) cannot bind/attach and enter/infect (helper) T cell;
Accept: 'complimentary'.
Accept: invade as alternative to infect.
2. No replication (of virus)

OR
No destruction of (helper) T cell;
Accept: reproduction (of virus).
(c) 1. Low/lower exposure to HIV (in Europe)

OR

Low/lower number of HIV/AIDS (infections/cases);
Accept: converse.
2. (HIV) has only been present for a short time period

OR
(HIV relatively) recently evolved;
3. Mutation/CCR5 has been around for many years;

Accept: frequency of mutation has always been high.
4. Mutation/CCR5 is advantageous (for something else);
[8] (a)
13

	Cell B	Cell C	Cell D
homologous chromosomes are present	\checkmark	\checkmark	
a stage of mitosis		\checkmark	

Mark horizontally
1 mark for each correct row
(b) Mark as pairs, do not mix and match

1. (Chromosomes consist of) two chromatids connected atcentromere;

Accept: sister chromatids for two chromatids
2. (Because) DNA has replicated;

OR
3. K is on equator of spindle;

Ignore: 'middle'
4. (because) attached at centromere;

Ignore reference to meiosis / bivalents / homologous pairs
2
(c) 1. Crossing over / exchange of alleles /lengths of DNA /recombination;

Accept: description of crossing over eg sections of chromatids break and re-join
Accept: reference to chiasma/ chiasmata
2. Between (chromatids of) homologous chromosomes;

Accept: 'between non-sister chromatids'
Accept: 'bivalent' for homologous
Ignore: genes exchanged
(d) Separation/segregation of pairs/homologous chromosomes; Accept: result of meiosis I / result of division of cell B Accept: pulled to opposite poles for 'separation' Ignore ref to chromatids
(e) (DNA) replication taking place/not finished;

Accept: they are cells in S phase
1
(a) 1. Change / mutation in base / nucleotide sequence (of DNA / gene);
Q.
Ignore: references to changing base-pairing
Accept: affect for change, if in correct context
Accept: changes triplets / codons
2. Change in amino acid sequence / primary structure (of enzyme);

Accept: different amino acid(s) coded for
Q Reject: different amino acids produced / formed / made
3. Change in hydrogen / ionic / disulfide bonds;Accept: references to sulfur bonds
4. Change in the tertiary structure / shape;

Neutral: alters 3D structure / 3D shape
5. Change in active site;
6. Substrate not complementary / cannot bind (to enzyme / active site) / noenzymesubstrate complexes form.

Accept: no E S complexes form
(b) 1. Non-SR strain falls more / SR strain falls less / up to $10(\mu \mathrm{~g} / \mathrm{cm}-3)$;

Must include 10 but only required once in either MP1 or MP2
Ignore: units or absence of
This must be a comparative statement
2. Above $10\left(\mu \mathrm{~g} / \mathrm{cm}^{-3}\right)$, SR strain levels out / off and non-SR strain continues to decrease;
3. Greater difference between strains with increasing concentration of antibiotic.

This must be a comparative statement
(c) 1. Division stopped (of both strains by scientist);Reject: references to mitosis stopping
2. SR strain still more resistant / fewer die / none die (at higher concentrations ofantibiotic).

Accept: SR strain and non-SR strain would be similar if resistance is due to only stopping division
Need some comparison with non-SR
(d) 1. Make a competitive / non-competitive inhibitor;

Mark in pairs either MP1 and MP2 OR
MP3 and MP4
2. Competitive competes with / blocks active site / non-competitive inhibitor affects / changes active site;

Do not mix and match
OR
3. (Make a drug) that inhibits / denatures / destroys enzyme / stringent response;Accept: drug that 'knocks out' / destroys enzyme
4. Give at the same time as / before an antibiotic.
(e) (SR strain)

1. Fewer free radicals (than non-SR);

Note: has to be comparative statement
2. Produces more catalase (than non-SR);

Accept converse statements for non-SR.
3. Catalase (might be) linked to production of fewer free radicals / breaking down /removing free radicals.

Accept: hydrolysis of radicals by catalase.

Accept: idea of larger groups at the top or smaller groups at the bottom
2. No overlap (between groups);
(ii) 3;
(iii) Chordata;

Accept: if phonetically correct eg ‘Cordata’
(b) (i) 1. (To provide) genetic variation; Genetic variation must be directly stated and not implied
2. (Allows) different combinations of maternal and paternal chromosomes / alleles;

Accept: any allele of one gene can combine with any allele of another gene
(ii) 1. (Zedonk has) 47 / odd / uneven number of chromosomes;

Accept: diploid number would be odd
Reject: if wrong number of chromosomes is given
2. Chromosomes cannot pair / are not homologous / chromosome number cannot be halved / meiosis cannot occur / sex cells / haploid cells are not produced;
Accept: cannot have half a chromosome
Q Reject: meiosis cannot occur in sex cells
(a) 1. Sugar-phosphate (backbone) / double stranded / helix so provides strength / stability
/ protects bases / protects hydrogen bonds;
Must be a direct link / obvious to get the mark
Neutral: reference to histones
2. Long / large molecule so can store lots of information;
3. Helix / coiled so compact;

Accept: can store in a small amount of space for 'compact'
4. Base sequence allows information to be stored / base sequence codes foramino acids / protein;

Accept: base sequence allows transcription
5. Double stranded so replication can occur semi-conservatively / strands can act as templates / complementary base pairing / A-T and G-C so accurate replication / identical copies can be made;
6. (Weak) hydrogen bonds for replication / unzipping / strand separation / many hydrogen bonds so stable / strong;

Accept: 'H-bonds' for 'hydrogen bonds'
(b) 1. (Mutation) in \mathbf{E} produces highest risk / 1.78;
2. (Mutation) in D produces next highest risk / 1.45;
3. (Mutation) in C produces least risk / 1.30; Must be stated directly and not implied
$\boldsymbol{E}>\boldsymbol{D}>\boldsymbol{C}=3$ marks
Accept: values of $0.78,0.45$ and 0.30 for MP1, MP2 and MP3 respectively
If no mark is awarded, a principle mark can be given for the idea that all mutant alleles increase the risk
(c) 180;
(d) (Similarities):

1. Same / similar pattern / both decrease, stay the same then increase;
2. Number of cells stays the same for same length of time;Ignore: wrong days stated

(Differences):

(Per unit volume of blood)
3. Greater / faster decrease in number of healthy cells / more healthy cells killed /healthy cells killed faster;

Accept: converse for cancer cells
Accept: greater percentage decrease in number of cancer cells / greater proportion of cancer cells killed
4. Greater / faster increase in number of healthy cells / more healthy cellsreplaced / divide / healthy cells replaced / divide faster;

Accept: converse for cancer cells
For differences, statements made must be comparative
3 max
(e) 1. More / too many healthy cells killed;
2. (So) will take time to replace / increase in number;Neutral: will take time to 'repair'
3. Person may die / have side effects;
[15] (a) (i) (In all organisms / DNA,) the same triplet codes for the same amino acid;

Accept codon / same three bases / nucleotides
Accept plurals if both triplets and amino acids
Reject triplets code for an amino acid
Reject reference to producing amino acid
(ii) 64 ;
(b) Splicing;

Ignore deletion references
Accept RNA splicing
(c) (i) 1. (Mutation) changes triplets / codons after that point / causes frame shift;

Accept changes splicing site

Ignore changes in sequence of nucleotides / bases
2. Changes amino acid sequence (after this) / codes for different aminoacids (after this);
Accept changes primary structure
Reject changes amino acid formed / one amino acid changed
3. Affects hydrogen / ionic / sulfur bond (not peptide bond);
4. Changes tertiary structure of protein (so non-functional);Neutral 3-D structure
(ii) 1. Intron non-coding (DNA) / only exons coding;

Context is the intron

Do not mix and match from alternatives
Neutral references to introns removed during splicing
1.and 2. Ignore ref. to code degenerate and get same / different amino acid in sequence
2. (So) not translated / no change in mRNA produced / no effect (on protein) / no effect on amino acid sequence;

Accept does not code for amino acids

OR

3. Prevents / changes splicing;
4. (So) faulty mRNA formed;

Accept exons not joined together / introns not removed
5. Get different amino acid sequence;

2 max
[8] (a) (i) Centromere;
18
Accept: if phonetically correct
Reject: centriole
(ii) 1. Holds chromatids together;
2. Attaches (chromatids) to spindle;
3. (Allows) chromatids to be separated / move to (opposite) poles / (centromere) divides / splits at metaphase / anaphase;
3. Q Neutral: chromosomes or chromatids split / halved / divided

> 3. Reject: reference to homologous chromosomes being separated Accept 'chromosomes' instead of 'chromatids' Ignore incorrect names for \boldsymbol{X}
(iii) (Homologous chromosomes) carry different alleles;

Accept alternative descriptions for 'alleles' eg different forms of a gene / different base sequences
Neutral: reference to maternal and paternal chromosomes
(b) (i) (In Figure 2)

1. Chromatids have separated (during anaphase);
2. Q Neutral: split / halved / divided
3. Reject: reference to homologous chromosomesbeing separated or
4. Chromatids have not replicated;
5. \& 2. Accept 'chromosomes' instead of 'chromatids' or
6. Chromosomes formed from only one chromatid;

Accept converse arguments for Figure 1
Ignore references to the cell not dividing as in the question stem Ignore: named phases
(ii) 1. Three chromosomes; Ignore shading
2. One from each homologous pair;

Only one mark for three chromosomes shown as pairs of chromatids
(iii) Crossing over / alleles exchanged between chromosomes or chromatids / chiasmata formation / genetic recombination;

Accept: description of crossing over eg sections of chromatids break and rejoin
Neutral: random fertilisation
Reject: reference to sister chromatids
Q Neutral: genes exchanged
Neutral: mutation

Accept "they" refers to human cells.
(ii) (Affects) protein synthesis;

Allow description e.g. 'amino acids not joined together / translation.
Reject: affects transcription.
(b) 1. Mutation present / occurs; Ignore antibiotic causes mutation.
2. Resistance gene / allele;

1. or 2.

Reference to immunity disqualifies first credited marking point.
3. Resistant bacteria (survive and) reproduce;

Reference to mitosis negates marking point 3.
2
[4] (a) (i) 4 ;

20

(ii) 1. Change in amino acid / (sequence of) amino acids / primary structure;

1. Reject = different amino acids are 'formed'
2. Change in hydrogen / ionic / disulphide bonds alters tertiary structure /active site (of enzyme);
3. Alters 3D structure on its own is not enough for this markingpoint.
4. Substrate not complementary / cannot bind (to enzyme / active site) / noenzyme- substrate complexes form;
(b) 1. Lack of skin pigment / pale / light skin / albino;
5. Lack of coordination / muscles action affected;
(c) Founder effect / colonies split off / migration / interbreeding;

Allow description of interbreeding e.g. reproduction between individuals from different populations
[7] (a) Difference in DNA / base sequence / difference in alleles / genes / gene pool;
(b) Environmental;

Accept: Environment
(c) Reduced (genetic diversity);

As fewer different / varied alleles / genes / reduced gene pool;
[4] (a) (i) Antibiotics kill other bacteria / Clostridium is resistant;

Less / no competition so (Clostridium)
reproduces / replicates / multiplies / increases in number;
Reference to bacteria being 'immune' negates first marking point.
Reference to mitosis negates second marking point.
(ii) Immune system less effective / more likely to have other infections / been in hospital;

Accept: 'Weak / lower' immune system'.
(b) Attaches to active site (of enzyme);
(Methicillin) is a competitive inhibitor / prevents monomers / substrate attaching (to enzyme);
'Competes for active site' = 2 marks.
Neutral: 'Prevents monomers joining / attaching to each other'.
Allow one mark max for answers relating to non-competitive inhibitor changing active site / preventing substrate attaching. Do not penalise Methicillin forms an enzyme / substrate complex.
(c) (i) Have other illness / medical condition / 'weak' immune system / disease /infection;

Reject: Due to 'other factors', 'are smokers', 'are obese' unless related to disease or illness.
(ii) Increase up to 2006 / 20 (per 100 000) then decreases;
(iii) Correct answer in range of $52-59.1 \%=$ two marks;

Incorrect answer but shows change as between 4.8 - 5.2 / shows correct subtraction giving this change e.g. 14-9= one mark.
(ii) 1. Odd number of chromosomes / 33 chromosomes (in leaf cell);
2. Chromosomes cannot pair / cannot undergo meiosis / would result in half chromosomes / cannot form haploid cells;
(b) (i) Fast growth / produces crop fast / produces large crop; Do not insist on relative statement.

Accept similar terms for fast. E.g. "better" growth
Do not accept unqualified references to profit.
(ii) Leaves less likely to break / higher breaking strength;
(c) Low genetic diversity because they are produced by mitosis;

Will all have the same DNA / genes / alleles / will be genetically identical / will be clones;

OR

Low genetic diversity because they are not produced by meiosis;
No crossing over / independent segregation / will not be genetically different; Independent segregation is the specification term. Accept other such as random assortment.
(a) Shape

1. Different penicillin has different shape / structure / enzyme / active site has specific shape / structure;

Not different

Binding

2. No longer fits / binds to active site / not complementary to active site / does not form E-S complex;

Consequence

3. (Different) penicillin not broken down;
(b) (i) 1. Kills pathogenic / harmful bacteria / pathogens;
4. Disease less likely / improves health / animals healthier / reduces spread of infection;
5. Faster growth / more productive animals / more food converted to meat /greater survival / lower vet's bills / increased yield / less energy (for "fighting infection"); Principles:
Action of antibiotic. Do not accept stops all disease
Action on health
Effect on production
(ii) 1. (Adding antibiotics) selects in favour of antibiotic resistance / resistant bacteria more likely to survive;
6. Increase in numbers / higher proportion of resistant bacteria;

Penalise immune only on the first occasion it occurs in this part of the question.
[7] (a) Introns;

25

(b) Ile Gly Val Ser;

1
(c) (i) Has no effect / same amino acid (sequence) / sameprimary structure; Q Reject same amino acid formed or produced.

Glycine named as same amino acid;
1 It still codes for glycine = two marks.
(ii) Leu replaces $\mathrm{Val} /$ change in amino acid (sequence) / primary structure;

Change in hydrogen / ionic bonds which alters tertiary structure / active site;
Q Different amino acid formed or produced negates first marking point.

Substrate cannot bind / no longer complementary / no enzyme-substrate complexes form;

Active site changed must be clear for third marking point but does not need reference to shape.
(d) (i) Interphase / S / synthesis (phase);
(ii) DNA / gene replication / synthesis occurs / longest stage;Allow 'genetic information' $=$ DNA.

Allow 'copied' or 'formed' = replication / synthesis
] (a) (So results) can be compared / so measurement is the same each time / because eye is
not perfectly round / uniform;
Accept eye opens to different amounts
(b) (i) 1. Eye (diameter) is smaller and antennae longer;
2. Antennae detecting touch;
3. Data only refers to shrimps / data may not apply to all animals / only inone area;
The principle here is that candidate has recognised that both features confirm suggestion. Exact wording does not matter.
(ii) 1. Standard deviation gives a measure of spread / variation;
2. More standard deviations overlap, the less likely it is that differences are real / significant / the more likely they are caused by chance;
Do not accept range
Accept converse.
Although we are looking for the idea of significance, we cannot require this term.
(c) (i) Qualitative statement about
difference in size /
difference in variation /
overlap in size;
Quantitative statement about
difference in size /
difference in variation /
overlap in size;
Supported by relevant two sets of figures from graph;;
Note simplistic answer involving a quantitative statement gains 1 mark.
More specific answer involving quantitative information gains 2 marks.
(ii) (No) for same body length, antenna are longer / antenna are shorter / some with longer body have short antennae / some with shorter body length have longer antennae;

OR

(Yes) positive correlation in open / in cave;
Habitat not critical as a term.
Must refer to idea of same habitat
Accept description
(e) 1. A small number of shrimps were / went into the cave;
2. All / high proportion of shrimps had allele L;
3. Cave population descended from these / these reproduce;
(f) (i) 1. Cross shrimps from two sites / watch courtship;
2. Breed young together / observe mating;
3. Allow 1 mark for any method of improving quality of results e.g. carry outreciprocal crosses / large number of crosses / isolate beforehand; Other valid equivalent suggestions should be accepted.
(ii) If same species the shrimps would breed, producing fertile young / courtship species specific;

Accept any form of evidence - mating / laying eggs / giving birth to young.
[15] (a) (Different) form / type / version of a gene / different base sequence of a gene;
(b) Two / sister chromatids joined by a centromere;

Due to DNA replication;
(c) (i) Crossing over;

Exchange (of alleles) between chromatids / chromosomes;
Negate first marking point for answers which refer to independent segregation.
Chiasma / chiasmata $=$ first marking point
(ii) Is infrequent / rare;

References to it being 'random', 'occurs by chance' or 'doesn't always occur' should not be credited without a clear idea that it is rare or infrequent.
(d) (i) Three chromosomes shown;

One from each homologous pair;
For first mark point allow drawings showing three chromosomes as single or double structures.
(ii) 8 ;
[9] (a) Isolation / quarantine / 'kept separate';

Screening / testing (of patients / doctors etc);
Sterilisation of wards / equipment / method to improve hygiene;
Do not allow improve 'hygiene' or 'cleanliness' without named example such as 'washing hands' use of gloves etc.

2 max
(b) May not all be absorbed;

May be broken down / metabolised / excreted quickly;
To kill the microorganisms / bacteria;
Reference to antibiotic resistance;
Reference to becoming 'immune' negates last marking point.
(c) (i) P ;
(d) (i) Prevents bias;

Vested interest (of scientists);

Prevents 'placebo' / positive / negative / psychological effects / 'demand characteristics' (in volunteers);

2 max
(ii) Age;

Ethnicity;
Lifestyle;
Body mass;
Health;
Sex of person;
Ignore references to same or different
(e) Gradual / slight increase followed by rapid / greater increase;

Allow more detailed descriptions which describe similar trend of gradual increase followed by rapid increase.

